Proof of Theorem opexg
Step | Hyp | Ref
| Expression |
1 | | dfop2 4575 |
. 2
⊢ 〈A, B〉 =
((Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B)) |
2 | | addcexlem 4382 |
. . . . . . . . 9
⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
3 | | 1cex 4142 |
. . . . . . . . . . 11
⊢
1c ∈
V |
4 | 3 | pw1ex 4303 |
. . . . . . . . . 10
⊢ ℘11c ∈ V |
5 | 4 | pw1ex 4303 |
. . . . . . . . 9
⊢ ℘1℘11c ∈ V |
6 | 2, 5 | imakex 4300 |
. . . . . . . 8
⊢ (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
7 | 6 | imagekex 4312 |
. . . . . . 7
⊢
Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
8 | | nncex 4396 |
. . . . . . . 8
⊢ Nn ∈
V |
9 | | vvex 4109 |
. . . . . . . 8
⊢ V ∈ V |
10 | 8, 9 | xpkex 4289 |
. . . . . . 7
⊢ ( Nn ×k V) ∈ V |
11 | 7, 10 | inex 4105 |
. . . . . 6
⊢
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∈ V |
12 | | idkex 4314 |
. . . . . . 7
⊢
Ik ∈ V |
13 | 8 | complex 4104 |
. . . . . . . 8
⊢ ∼ Nn ∈
V |
14 | 13, 9 | xpkex 4289 |
. . . . . . 7
⊢ ( ∼ Nn ×k V) ∈ V |
15 | 12, 14 | inex 4105 |
. . . . . 6
⊢ (
Ik ∩ ( ∼ Nn
×k V)) ∈
V |
16 | 11, 15 | unex 4106 |
. . . . 5
⊢
((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ∈
V |
17 | 16 | imagekex 4312 |
. . . 4
⊢
Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ∈
V |
18 | | imakexg 4299 |
. . . 4
⊢
((Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ∈ V ∧ A ∈ V) →
(Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ∈
V) |
19 | 17, 18 | mpan 651 |
. . 3
⊢ (A ∈ V →
(Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ∈
V) |
20 | | ssetkex 4294 |
. . . . . . . 8
⊢ Sk ∈
V |
21 | 20 | ins2kex 4307 |
. . . . . . 7
⊢ Ins2k Sk ∈
V |
22 | 17 | cnvkex 4287 |
. . . . . . . . . 10
⊢ ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∈ V |
23 | 22, 20 | cokex 4310 |
. . . . . . . . 9
⊢ (◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∈ V |
24 | | snex 4111 |
. . . . . . . . . 10
⊢
{{0c}} ∈
V |
25 | 24, 9 | xpkex 4289 |
. . . . . . . . 9
⊢
({{0c}} ×k V) ∈ V |
26 | 23, 25 | unex 4106 |
. . . . . . . 8
⊢ ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V)) ∈ V |
27 | 26 | ins3kex 4308 |
. . . . . . 7
⊢ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V)) ∈ V |
28 | 21, 27 | symdifex 4108 |
. . . . . 6
⊢ ( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) ∈ V |
29 | 28, 5 | imakex 4300 |
. . . . 5
⊢ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
30 | 29 | complex 4104 |
. . . 4
⊢ ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
31 | | imakexg 4299 |
. . . 4
⊢ (( ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈ V
∧ B ∈ W) → ( ∼ (( Ins2k Sk ⊕
Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B) ∈ V) |
32 | 30, 31 | mpan 651 |
. . 3
⊢ (B ∈ W → ( ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B) ∈ V) |
33 | | unexg 4101 |
. . 3
⊢
(((Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ∈ V ∧ ( ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B) ∈ V) →
((Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) “k A) ∪ (
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B)) ∈ V) |
34 | 19, 32, 33 | syl2an 463 |
. 2
⊢ ((A ∈ V ∧ B ∈ W) →
((Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) “k A) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) “k B)) ∈ V) |
35 | 1, 34 | syl5eqel 2437 |
1
⊢ ((A ∈ V ∧ B ∈ W) → 〈A, B〉 ∈ V) |