Proof of Theorem ud4lem1c
Step | Hyp | Ref
| Expression |
1 | | ud4lem0c 280 |
. . 3
(a →4 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
2 | | df-i4 47 |
. . 3
(b →4 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
3 | 1, 2 | 2or 72 |
. 2
((a →4 b)⊥ ∪ (b →4 a)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
4 | | comor2 462 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C b⊥ |
5 | 4 | comcom3 454 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ )⊥ C
b⊥ |
6 | 5 | comcom5 458 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C b |
7 | | comor1 461 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) C a⊥ |
8 | 7 | comcom3 454 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ )⊥ C
a⊥ |
9 | 8 | comcom5 458 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C a |
10 | 6, 9 | com2an 484 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b ∩ a) |
11 | 4, 9 | com2an 484 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b⊥ ∩ a) |
12 | 10, 11 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
13 | 12 | comcom 453 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C (a⊥ ∪ b⊥ ) |
14 | | comor2 462 |
. . . . . . . . . . . 12
(a ∪ b⊥ ) C b⊥ |
15 | 14 | comcom3 454 |
. . . . . . . . . . 11
(a ∪ b⊥ )⊥ C
b⊥ |
16 | 15 | comcom5 458 |
. . . . . . . . . 10
(a ∪ b⊥ ) C b |
17 | | comor1 461 |
. . . . . . . . . 10
(a ∪ b⊥ ) C a |
18 | 16, 17 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (b ∩ a) |
19 | 14, 17 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (b⊥ ∩ a) |
20 | 18, 19 | com2or 483 |
. . . . . . . 8
(a ∪ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
21 | 20 | comcom 453 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) C (a
∪ b⊥
) |
22 | 13, 21 | com2an 484 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
23 | 22 | comcom 453 |
. . . . 5
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
24 | | comor2 462 |
. . . . . . . . . 10
(b⊥ ∪ a) C a |
25 | 24 | comcom2 183 |
. . . . . . . . 9
(b⊥ ∪ a) C a⊥ |
26 | | comor1 461 |
. . . . . . . . 9
(b⊥ ∪ a) C b⊥ |
27 | 25, 26 | com2or 483 |
. . . . . . . 8
(b⊥ ∪ a) C (a⊥ ∪ b⊥ ) |
28 | 25 | comcom3 454 |
. . . . . . . . . 10
(b⊥ ∪ a)⊥ C a⊥ |
29 | 28 | comcom5 458 |
. . . . . . . . 9
(b⊥ ∪ a) C a |
30 | 29, 26 | com2or 483 |
. . . . . . . 8
(b⊥ ∪ a) C (a
∪ b⊥
) |
31 | 27, 30 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
32 | 31 | comcom 453 |
. . . . . 6
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C (b⊥ ∪ a) |
33 | | comorr 184 |
. . . . . . . 8
a⊥ C
(a⊥ ∪ b⊥ ) |
34 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ) |
35 | 34 | comcom3 454 |
. . . . . . . 8
a⊥ C
(a ∪ b⊥ ) |
36 | 33, 35 | com2an 484 |
. . . . . . 7
a⊥ C
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
37 | 36 | comcom 453 |
. . . . . 6
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C a⊥ |
38 | 32, 37 | com2an 484 |
. . . . 5
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C ((b⊥ ∪ a) ∩ a⊥ ) |
39 | 23, 38 | com2or 483 |
. . . 4
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
40 | | coman1 185 |
. . . . . . . . 9
(a ∩ b⊥ ) C a |
41 | 40 | comcom2 183 |
. . . . . . . 8
(a ∩ b⊥ ) C a⊥ |
42 | | coman2 186 |
. . . . . . . 8
(a ∩ b⊥ ) C b⊥ |
43 | 41, 42 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C (a⊥ ∪ b⊥ ) |
44 | 40, 42 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C (a ∪ b⊥ ) |
45 | 43, 44 | com2an 484 |
. . . . . 6
(a ∩ b⊥ ) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
46 | 45 | comcom 453 |
. . . . 5
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C (a ∩ b⊥ ) |
47 | 4 | comcom 453 |
. . . . . . . . 9
b⊥ C
(a⊥ ∪ b⊥ ) |
48 | 14 | comcom 453 |
. . . . . . . . 9
b⊥ C
(a ∪ b⊥ ) |
49 | 47, 48 | com2an 484 |
. . . . . . . 8
b⊥ C
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
50 | 49 | comcom 453 |
. . . . . . 7
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C b⊥ |
51 | 50 | comcom3 454 |
. . . . . 6
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ ))⊥ C
b⊥ |
52 | 51 | comcom5 458 |
. . . . 5
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C b |
53 | 46, 52 | com2or 483 |
. . . 4
((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) C ((a ∩ b⊥ ) ∪ b) |
54 | 39, 53 | fh4r 476 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ (((a ∩ b⊥ ) ∪ b) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) |
55 | | coman2 186 |
. . . . . . . . . . . 12
(b ∩ a) C a |
56 | 55 | comcom2 183 |
. . . . . . . . . . 11
(b ∩ a) C a⊥ |
57 | | coman1 185 |
. . . . . . . . . . . 12
(b ∩ a) C b |
58 | 57 | comcom2 183 |
. . . . . . . . . . 11
(b ∩ a) C b⊥ |
59 | 56, 58 | com2or 483 |
. . . . . . . . . 10
(b ∩ a) C (a⊥ ∪ b⊥ ) |
60 | 59 | comcom 453 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b ∩ a) |
61 | | coman2 186 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C a |
62 | 61 | comcom2 183 |
. . . . . . . . . . 11
(b⊥ ∩ a) C a⊥ |
63 | | coman1 185 |
. . . . . . . . . . 11
(b⊥ ∩ a) C b⊥ |
64 | 62, 63 | com2or 483 |
. . . . . . . . . 10
(b⊥ ∩ a) C (a⊥ ∪ b⊥ ) |
65 | 64 | comcom 453 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b⊥ ∩ a) |
66 | 60, 65 | com2or 483 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
67 | 27 | comcom 453 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b⊥ ∪ a) |
68 | 67, 7 | com2an 484 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C ((b⊥ ∪ a) ∩ a⊥ ) |
69 | 66, 68 | com2or 483 |
. . . . . . 7
(a⊥ ∪ b⊥ ) C (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
70 | 17 | comcom2 183 |
. . . . . . . . 9
(a ∪ b⊥ ) C a⊥ |
71 | 70, 14 | com2or 483 |
. . . . . . . 8
(a ∪ b⊥ ) C (a⊥ ∪ b⊥ ) |
72 | 71 | comcom 453 |
. . . . . . 7
(a⊥ ∪ b⊥ ) C (a ∪ b⊥ ) |
73 | 69, 72 | fh4r 476 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (((a⊥ ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ ((a ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) |
74 | | ax-a2 31 |
. . . . . . . . . . 11
(((a⊥ ∪
b⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∪ ((a⊥ ∪ b⊥ ) ∪ (b ∩ a))) |
75 | | ax-a3 32 |
. . . . . . . . . . 11
(((a⊥ ∪
b⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ a)) = ((a⊥ ∪ b⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) |
76 | | ax-a2 31 |
. . . . . . . . . . . . . . 15
(a⊥ ∪ b⊥ ) = (b⊥ ∪ a⊥ ) |
77 | | df-a 40 |
. . . . . . . . . . . . . . 15
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
78 | 76, 77 | 2or 72 |
. . . . . . . . . . . . . 14
((a⊥ ∪ b⊥ ) ∪ (b ∩ a)) =
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ a⊥ )⊥
) |
79 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = ((b⊥ ∪
a⊥ ) ∪ (b⊥ ∪ a⊥ )⊥
) |
80 | 79 | ax-r1 35 |
. . . . . . . . . . . . . 14
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ a⊥ )⊥ ) =
1 |
81 | 78, 80 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∪ b⊥ ) ∪ (b ∩ a)) =
1 |
82 | 81 | lor 70 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∪ ((a⊥ ∪ b⊥ ) ∪ (b ∩ a))) =
((b⊥ ∩ a) ∪ 1) |
83 | | or1 104 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∪ 1) = 1 |
84 | 82, 83 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∪ ((a⊥ ∪ b⊥ ) ∪ (b ∩ a))) =
1 |
85 | 74, 75, 84 | 3tr2 64 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) = 1 |
86 | 85 | ax-r5 38 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = (1 ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
87 | | ax-a3 32 |
. . . . . . . . 9
(((a⊥ ∪
b⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = ((a⊥ ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
88 | | ax-a2 31 |
. . . . . . . . . 10
(1 ∪ ((b⊥ ∪
a) ∩ a⊥ )) = (((b⊥ ∪ a) ∩ a⊥ ) ∪ 1) |
89 | | or1 104 |
. . . . . . . . . 10
(((b⊥ ∪
a) ∩ a⊥ ) ∪ 1) = 1 |
90 | 88, 89 | ax-r2 36 |
. . . . . . . . 9
(1 ∪ ((b⊥ ∪
a) ∩ a⊥ )) = 1 |
91 | 86, 87, 90 | 3tr2 64 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = 1 |
92 | | ax-a2 31 |
. . . . . . . . 9
((a ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ (a ∪ b⊥ )) |
93 | | lear 161 |
. . . . . . . . . . . . 13
(b ∩ a) ≤ a |
94 | | lear 161 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ a |
95 | 93, 94 | lel2or 170 |
. . . . . . . . . . . 12
((b ∩ a) ∪ (b⊥ ∩ a)) ≤ a |
96 | | leo 158 |
. . . . . . . . . . . 12
a ≤ (a ∪ b⊥ ) |
97 | 95, 96 | letr 137 |
. . . . . . . . . . 11
((b ∩ a) ∪ (b⊥ ∩ a)) ≤ (a
∪ b⊥
) |
98 | | lea 160 |
. . . . . . . . . . . 12
((b⊥ ∪ a) ∩ a⊥ ) ≤ (b⊥ ∪ a) |
99 | | ax-a2 31 |
. . . . . . . . . . . 12
(b⊥ ∪ a) = (a ∪
b⊥ ) |
100 | 98, 99 | lbtr 139 |
. . . . . . . . . . 11
((b⊥ ∪ a) ∩ a⊥ ) ≤ (a ∪ b⊥ ) |
101 | 97, 100 | lel2or 170 |
. . . . . . . . . 10
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ≤ (a ∪ b⊥ ) |
102 | 101 | df-le2 131 |
. . . . . . . . 9
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ (a ∪ b⊥ )) = (a ∪ b⊥ ) |
103 | 92, 102 | ax-r2 36 |
. . . . . . . 8
((a ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∪ b⊥ ) |
104 | 91, 103 | 2an 79 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ ((a ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) = (1 ∩ (a ∪ b⊥ )) |
105 | | ancom 74 |
. . . . . . . 8
(1 ∩ (a ∪ b⊥ )) = ((a ∪ b⊥ ) ∩ 1) |
106 | | an1 106 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ 1) = (a ∪ b⊥ ) |
107 | 105, 106 | ax-r2 36 |
. . . . . . 7
(1 ∩ (a ∪ b⊥ )) = (a ∪ b⊥ ) |
108 | 104, 107 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ ((a ∪ b⊥ ) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) = (a ∪ b⊥ ) |
109 | 73, 108 | ax-r2 36 |
. . . . 5
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∪ b⊥ ) |
110 | | ax-a2 31 |
. . . . . 6
(((a ∩ b⊥ ) ∪ b) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ b)) |
111 | | or32 82 |
. . . . . . . 8
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ b)) = ((((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((a
∩ b⊥ ) ∪ b)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
112 | | or4 84 |
. . . . . . . . . 10
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((a
∩ b⊥ ) ∪ b)) = (((b ∩
a) ∪ (a ∩ b⊥ )) ∪ ((b⊥ ∩ a) ∪ b)) |
113 | 112 | ax-r5 38 |
. . . . . . . . 9
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((a
∩ b⊥ ) ∪ b)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = ((((b ∩ a) ∪
(a ∩ b⊥ )) ∪ ((b⊥ ∩ a) ∪ b))
∪ ((b⊥ ∪ a) ∩ a⊥ )) |
114 | | ax-a3 32 |
. . . . . . . . . 10
((((b ∩ a) ∪ (a
∩ b⊥ )) ∪
((b⊥ ∩ a) ∪ b))
∪ ((b⊥ ∪ a) ∩ a⊥ )) = (((b ∩ a) ∪
(a ∩ b⊥ )) ∪ (((b⊥ ∩ a) ∪ b)
∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
115 | 26 | comcom3 454 |
. . . . . . . . . . . . . . . 16
(b⊥ ∪ a)⊥ C b⊥ |
116 | 115 | comcom5 458 |
. . . . . . . . . . . . . . 15
(b⊥ ∪ a) C b |
117 | 116, 25 | fh4 472 |
. . . . . . . . . . . . . 14
(b ∪ ((b⊥ ∪ a) ∩ a⊥ )) = ((b ∪ (b⊥ ∪ a)) ∩ (b
∪ a⊥
)) |
118 | | df-t 41 |
. . . . . . . . . . . . . . . . . . 19
1 = (b ∪ b⊥ ) |
119 | 118 | ax-r1 35 |
. . . . . . . . . . . . . . . . . 18
(b ∪ b⊥ ) = 1 |
120 | 119 | ax-r5 38 |
. . . . . . . . . . . . . . . . 17
((b ∪ b⊥ ) ∪ a) = (1 ∪ a) |
121 | | ax-a3 32 |
. . . . . . . . . . . . . . . . 17
((b ∪ b⊥ ) ∪ a) = (b ∪
(b⊥ ∪ a)) |
122 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . 18
(1 ∪ a) = (a ∪ 1) |
123 | | or1 104 |
. . . . . . . . . . . . . . . . . 18
(a ∪ 1) = 1 |
124 | 122, 123 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(1 ∪ a) = 1 |
125 | 120, 121,
124 | 3tr2 64 |
. . . . . . . . . . . . . . . 16
(b ∪ (b⊥ ∪ a)) = 1 |
126 | | anor2 89 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∩ a) = (b ∪
a⊥
)⊥ |
127 | 126 | con2 67 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ a)⊥ = (b ∪ a⊥ ) |
128 | 127 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
(b ∪ a⊥ ) = (b⊥ ∩ a)⊥ |
129 | 125, 128 | 2an 79 |
. . . . . . . . . . . . . . 15
((b ∪ (b⊥ ∪ a)) ∩ (b
∪ a⊥ )) = (1 ∩
(b⊥ ∩ a)⊥ ) |
130 | | ancom 74 |
. . . . . . . . . . . . . . . 16
(1 ∩ (b⊥ ∩
a)⊥ ) = ((b⊥ ∩ a)⊥ ∩ 1) |
131 | | an1 106 |
. . . . . . . . . . . . . . . 16
((b⊥ ∩ a)⊥ ∩ 1) = (b⊥ ∩ a)⊥ |
132 | 130, 131 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(1 ∩ (b⊥ ∩
a)⊥ ) = (b⊥ ∩ a)⊥ |
133 | 129, 132 | ax-r2 36 |
. . . . . . . . . . . . . 14
((b ∪ (b⊥ ∪ a)) ∩ (b
∪ a⊥ )) = (b⊥ ∩ a)⊥ |
134 | 117, 133 | ax-r2 36 |
. . . . . . . . . . . . 13
(b ∪ ((b⊥ ∪ a) ∩ a⊥ )) = (b⊥ ∩ a)⊥ |
135 | 134 | lor 70 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∪ (b
∪ ((b⊥ ∪ a) ∩ a⊥ ))) = ((b⊥ ∩ a) ∪ (b⊥ ∩ a)⊥ ) |
136 | | ax-a3 32 |
. . . . . . . . . . . 12
(((b⊥ ∩
a) ∪ b) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = ((b⊥ ∩ a) ∪ (b
∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
137 | | df-t 41 |
. . . . . . . . . . . 12
1 = ((b⊥ ∩
a) ∪ (b⊥ ∩ a)⊥ ) |
138 | 135, 136,
137 | 3tr1 63 |
. . . . . . . . . . 11
(((b⊥ ∩
a) ∪ b) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = 1 |
139 | 138 | lor 70 |
. . . . . . . . . 10
(((b ∩ a) ∪ (a
∩ b⊥ )) ∪
(((b⊥ ∩ a) ∪ b)
∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (((b ∩ a) ∪
(a ∩ b⊥ )) ∪ 1) |
140 | 114, 139 | ax-r2 36 |
. . . . . . . . 9
((((b ∩ a) ∪ (a
∩ b⊥ )) ∪
((b⊥ ∩ a) ∪ b))
∪ ((b⊥ ∪ a) ∩ a⊥ )) = (((b ∩ a) ∪
(a ∩ b⊥ )) ∪ 1) |
141 | 113, 140 | ax-r2 36 |
. . . . . . . 8
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((a
∩ b⊥ ) ∪ b)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) = (((b ∩ a) ∪
(a ∩ b⊥ )) ∪ 1) |
142 | 111, 141 | ax-r2 36 |
. . . . . . 7
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ b)) = (((b ∩
a) ∪ (a ∩ b⊥ )) ∪ 1) |
143 | | or1 104 |
. . . . . . 7
(((b ∩ a) ∪ (a
∩ b⊥ )) ∪ 1) =
1 |
144 | 142, 143 | ax-r2 36 |
. . . . . 6
((((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ b)) = 1 |
145 | 110, 144 | ax-r2 36 |
. . . . 5
(((a ∩ b⊥ ) ∪ b) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = 1 |
146 | 109, 145 | 2an 79 |
. . . 4
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ (((a ∩ b⊥ ) ∪ b) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) = ((a ∪ b⊥ ) ∩ 1) |
147 | 146, 106 | ax-r2 36 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∪ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) ∩ (((a ∩ b⊥ ) ∪ b) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )))) = (a ∪ b⊥ ) |
148 | 54, 147 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∪ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∪ b⊥ ) |
149 | 3, 148 | ax-r2 36 |
1
((a →4 b)⊥ ∪ (b →4 a)) = (a ∪
b⊥ ) |