Proof of Theorem ud4lem1b
| Step | Hyp | Ref
| Expression |
| 1 | | ud4lem0c 280 |
. . 3
(a →4 b)⊥ = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
| 2 | | df-i4 47 |
. . 3
(b →4 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ )) |
| 3 | 1, 2 | 2an 79 |
. 2
((a →4 b)⊥ ∩ (b →4 a)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) |
| 4 | | coman2 186 |
. . . . . . . . . . 11
(b ∩ a) C a |
| 5 | 4 | comcom2 183 |
. . . . . . . . . 10
(b ∩ a) C a⊥ |
| 6 | | coman1 185 |
. . . . . . . . . . 11
(b ∩ a) C b |
| 7 | 6 | comcom2 183 |
. . . . . . . . . 10
(b ∩ a) C b⊥ |
| 8 | 5, 7 | com2or 483 |
. . . . . . . . 9
(b ∩ a) C (a⊥ ∪ b⊥ ) |
| 9 | 8 | comcom 453 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (b ∩ a) |
| 10 | | coman2 186 |
. . . . . . . . . . 11
(b⊥ ∩ a) C a |
| 11 | 10 | comcom2 183 |
. . . . . . . . . 10
(b⊥ ∩ a) C a⊥ |
| 12 | | coman1 185 |
. . . . . . . . . 10
(b⊥ ∩ a) C b⊥ |
| 13 | 11, 12 | com2or 483 |
. . . . . . . . 9
(b⊥ ∩ a) C (a⊥ ∪ b⊥ ) |
| 14 | 13 | comcom 453 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) C (b⊥ ∩ a) |
| 15 | 9, 14 | com2or 483 |
. . . . . . 7
(a⊥ ∪ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
| 16 | 15 | comcom 453 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C (a⊥ ∪ b⊥ ) |
| 17 | 4, 7 | com2or 483 |
. . . . . . . . 9
(b ∩ a) C (a
∪ b⊥
) |
| 18 | 17 | comcom 453 |
. . . . . . . 8
(a ∪ b⊥ ) C (b ∩ a) |
| 19 | | comor2 462 |
. . . . . . . . 9
(a ∪ b⊥ ) C b⊥ |
| 20 | | comor1 461 |
. . . . . . . . 9
(a ∪ b⊥ ) C a |
| 21 | 19, 20 | com2an 484 |
. . . . . . . 8
(a ∪ b⊥ ) C (b⊥ ∩ a) |
| 22 | 18, 21 | com2or 483 |
. . . . . . 7
(a ∪ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
| 23 | 22 | comcom 453 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C (a
∪ b⊥
) |
| 24 | 16, 23 | com2an 484 |
. . . . 5
((b ∩ a) ∪ (b⊥ ∩ a)) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
| 25 | | coman2 186 |
. . . . . . . . . . 11
(a ∩ b⊥ ) C b⊥ |
| 26 | 25 | comcom3 454 |
. . . . . . . . . 10
(a ∩ b⊥ )⊥ C
b⊥ |
| 27 | 26 | comcom5 458 |
. . . . . . . . 9
(a ∩ b⊥ ) C b |
| 28 | | coman1 185 |
. . . . . . . . 9
(a ∩ b⊥ ) C a |
| 29 | 27, 28 | com2an 484 |
. . . . . . . 8
(a ∩ b⊥ ) C (b ∩ a) |
| 30 | 25, 28 | com2an 484 |
. . . . . . . 8
(a ∩ b⊥ ) C (b⊥ ∩ a) |
| 31 | 29, 30 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
| 32 | 31 | comcom 453 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C (a
∩ b⊥
) |
| 33 | 6 | comcom 453 |
. . . . . . . 8
b C (b ∩ a) |
| 34 | 12 | comcom 453 |
. . . . . . . . . 10
b⊥ C
(b⊥ ∩ a) |
| 35 | 34 | comcom2 183 |
. . . . . . . . 9
b⊥ C
(b⊥ ∩ a)⊥ |
| 36 | 35 | comcom5 458 |
. . . . . . . 8
b C (b⊥ ∩ a) |
| 37 | 33, 36 | com2or 483 |
. . . . . . 7
b C ((b ∩ a) ∪
(b⊥ ∩ a)) |
| 38 | 37 | comcom 453 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C b |
| 39 | 32, 38 | com2or 483 |
. . . . 5
((b ∩ a) ∪ (b⊥ ∩ a)) C ((a
∩ b⊥ ) ∪ b) |
| 40 | 24, 39 | com2an 484 |
. . . 4
((b ∩ a) ∪ (b⊥ ∩ a)) C (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
| 41 | | comor1 461 |
. . . . . . . . . 10
(b⊥ ∪ a) C b⊥ |
| 42 | 41 | comcom3 454 |
. . . . . . . . 9
(b⊥ ∪ a)⊥ C b⊥ |
| 43 | 42 | comcom5 458 |
. . . . . . . 8
(b⊥ ∪ a) C b |
| 44 | | comor2 462 |
. . . . . . . 8
(b⊥ ∪ a) C a |
| 45 | 43, 44 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C (b
∩ a) |
| 46 | 41, 44 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C (b⊥ ∩ a) |
| 47 | 45, 46 | com2or 483 |
. . . . . 6
(b⊥ ∪ a) C ((b
∩ a) ∪ (b⊥ ∩ a)) |
| 48 | 47 | comcom 453 |
. . . . 5
((b ∩ a) ∪ (b⊥ ∩ a)) C (b⊥ ∪ a) |
| 49 | 4 | comcom 453 |
. . . . . . . 8
a C (b ∩ a) |
| 50 | 10 | comcom 453 |
. . . . . . . 8
a C (b⊥ ∩ a) |
| 51 | 49, 50 | com2or 483 |
. . . . . . 7
a C ((b ∩ a) ∪
(b⊥ ∩ a)) |
| 52 | 51 | comcom 453 |
. . . . . 6
((b ∩ a) ∪ (b⊥ ∩ a)) C a |
| 53 | 52 | comcom2 183 |
. . . . 5
((b ∩ a) ∪ (b⊥ ∩ a)) C a⊥ |
| 54 | 48, 53 | com2an 484 |
. . . 4
((b ∩ a) ∪ (b⊥ ∩ a)) C ((b⊥ ∪ a) ∩ a⊥ ) |
| 55 | 40, 54 | fh2 470 |
. . 3
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) |
| 56 | 8, 17 | com2an 484 |
. . . . . . . 8
(b ∩ a) C ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
| 57 | 4, 7 | com2an 484 |
. . . . . . . . 9
(b ∩ a) C (a
∩ b⊥
) |
| 58 | 57, 6 | com2or 483 |
. . . . . . . 8
(b ∩ a) C ((a
∩ b⊥ ) ∪ b) |
| 59 | 56, 58 | com2an 484 |
. . . . . . 7
(b ∩ a) C (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
| 60 | 7, 4 | com2an 484 |
. . . . . . 7
(b ∩ a) C (b⊥ ∩ a) |
| 61 | 59, 60 | fh2 470 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) = (((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a))) |
| 62 | | an32 83 |
. . . . . . . . . 10
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) = ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ ((a ∩ b⊥ ) ∪ b)) |
| 63 | | an32 83 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a)) =
(((a⊥ ∪ b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) |
| 64 | | ax-a2 31 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∪ b⊥ ) = (b⊥ ∪ a⊥ ) |
| 65 | | df-a 40 |
. . . . . . . . . . . . . . . . 17
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
| 66 | 64, 65 | 2an 79 |
. . . . . . . . . . . . . . . 16
((a⊥ ∪ b⊥ ) ∩ (b ∩ a)) =
((b⊥ ∪ a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥
) |
| 67 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = ((b⊥ ∪
a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥
) |
| 68 | 67 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((b⊥ ∪ a⊥ ) ∩ (b⊥ ∪ a⊥ )⊥ ) =
0 |
| 69 | 66, 68 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a⊥ ∪ b⊥ ) ∩ (b ∩ a)) =
0 |
| 70 | 69 | ran 78 |
. . . . . . . . . . . . . 14
(((a⊥ ∪
b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) = (0 ∩ (a ∪ b⊥ )) |
| 71 | | ancom 74 |
. . . . . . . . . . . . . . 15
(0 ∩ (a ∪ b⊥ )) = ((a ∪ b⊥ ) ∩ 0) |
| 72 | | an0 108 |
. . . . . . . . . . . . . . 15
((a ∪ b⊥ ) ∩ 0) = 0 |
| 73 | 71, 72 | ax-r2 36 |
. . . . . . . . . . . . . 14
(0 ∩ (a ∪ b⊥ )) = 0 |
| 74 | 70, 73 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a⊥ ∪
b⊥ ) ∩ (b ∩ a))
∩ (a ∪ b⊥ )) = 0 |
| 75 | 63, 74 | ax-r2 36 |
. . . . . . . . . . . 12
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a)) =
0 |
| 76 | 75 | ran 78 |
. . . . . . . . . . 11
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ ((a ∩ b⊥ ) ∪ b)) = (0 ∩ ((a ∩ b⊥ ) ∪ b)) |
| 77 | | ancom 74 |
. . . . . . . . . . . 12
(0 ∩ ((a ∩ b⊥ ) ∪ b)) = (((a ∩
b⊥ ) ∪ b) ∩ 0) |
| 78 | | an0 108 |
. . . . . . . . . . . 12
(((a ∩ b⊥ ) ∪ b) ∩ 0) = 0 |
| 79 | 77, 78 | ax-r2 36 |
. . . . . . . . . . 11
(0 ∩ ((a ∩ b⊥ ) ∪ b)) = 0 |
| 80 | 76, 79 | ax-r2 36 |
. . . . . . . . . 10
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (b ∩ a))
∩ ((a ∩ b⊥ ) ∪ b)) = 0 |
| 81 | 62, 80 | ax-r2 36 |
. . . . . . . . 9
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) = 0 |
| 82 | | lea 160 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a) ≤ b⊥ |
| 83 | | leor 159 |
. . . . . . . . . . . . . 14
b⊥ ≤ (a⊥ ∪ b⊥ ) |
| 84 | 82, 83 | letr 137 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ (a⊥ ∪ b⊥ ) |
| 85 | | lear 161 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a) ≤ a |
| 86 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ) |
| 87 | 85, 86 | letr 137 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ (a ∪
b⊥ ) |
| 88 | 84, 87 | ler2an 173 |
. . . . . . . . . . . 12
(b⊥ ∩ a) ≤ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) |
| 89 | | ancom 74 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) = (a ∩
b⊥ ) |
| 90 | | leo 158 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ) ≤ ((a ∩ b⊥ ) ∪ b) |
| 91 | 89, 90 | bltr 138 |
. . . . . . . . . . . 12
(b⊥ ∩ a) ≤ ((a
∩ b⊥ ) ∪ b) |
| 92 | 88, 91 | ler2an 173 |
. . . . . . . . . . 11
(b⊥ ∩ a) ≤ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) |
| 93 | 92 | df2le2 136 |
. . . . . . . . . 10
((b⊥ ∩ a) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b))) = (b⊥ ∩ a) |
| 94 | | ancom 74 |
. . . . . . . . . 10
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b))) |
| 95 | | ancom 74 |
. . . . . . . . . 10
(a ∩ b⊥ ) = (b⊥ ∩ a) |
| 96 | 93, 94, 95 | 3tr1 63 |
. . . . . . . . 9
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a)) = (a ∩
b⊥ ) |
| 97 | 81, 96 | 2or 72 |
. . . . . . . 8
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a))) = (0 ∪ (a ∩ b⊥ )) |
| 98 | | ax-a2 31 |
. . . . . . . 8
(0 ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ 0) |
| 99 | 97, 98 | ax-r2 36 |
. . . . . . 7
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a))) = ((a ∩
b⊥ ) ∪
0) |
| 100 | | or0 102 |
. . . . . . 7
((a ∩ b⊥ ) ∪ 0) = (a ∩ b⊥ ) |
| 101 | 99, 100 | ax-r2 36 |
. . . . . 6
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b
∩ a)) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (b⊥ ∩ a))) = (a ∩
b⊥ ) |
| 102 | 61, 101 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) = (a ∩
b⊥ ) |
| 103 | | anass 76 |
. . . . . 6
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) |
| 104 | 25, 28 | com2or 483 |
. . . . . . . . . . 11
(a ∩ b⊥ ) C (b⊥ ∪ a) |
| 105 | 28 | comcom2 183 |
. . . . . . . . . . 11
(a ∩ b⊥ ) C a⊥ |
| 106 | 104, 105 | com2an 484 |
. . . . . . . . . 10
(a ∩ b⊥ ) C ((b⊥ ∪ a) ∩ a⊥ ) |
| 107 | 106, 27 | fh2r 474 |
. . . . . . . . 9
(((a ∩ b⊥ ) ∪ b) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = (((a ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) ∪ (b ∩ ((b⊥ ∪ a) ∩ a⊥ ))) |
| 108 | | an12 81 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = ((b⊥ ∪ a) ∩ ((a
∩ b⊥ ) ∩ a⊥ )) |
| 109 | | an32 83 |
. . . . . . . . . . . . . . 15
((a ∩ b⊥ ) ∩ a⊥ ) = ((a ∩ a⊥ ) ∩ b⊥ ) |
| 110 | | ancom 74 |
. . . . . . . . . . . . . . . 16
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
| 111 | | dff 101 |
. . . . . . . . . . . . . . . . . . 19
0 = (a ∩ a⊥ ) |
| 112 | 111 | ax-r1 35 |
. . . . . . . . . . . . . . . . . 18
(a ∩ a⊥ ) = 0 |
| 113 | 112 | lan 77 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
| 114 | | an0 108 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ 0) =
0 |
| 115 | 113, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
| 116 | 110, 115 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
| 117 | 109, 116 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∩ b⊥ ) ∩ a⊥ ) = 0 |
| 118 | 117 | lan 77 |
. . . . . . . . . . . . 13
((b⊥ ∪ a) ∩ ((a
∩ b⊥ ) ∩ a⊥ )) = ((b⊥ ∪ a) ∩ 0) |
| 119 | | an0 108 |
. . . . . . . . . . . . 13
((b⊥ ∪ a) ∩ 0) = 0 |
| 120 | 118, 119 | ax-r2 36 |
. . . . . . . . . . . 12
((b⊥ ∪ a) ∩ ((a
∩ b⊥ ) ∩ a⊥ )) = 0 |
| 121 | 108, 120 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = 0 |
| 122 | | anor1 88 |
. . . . . . . . . . . . 13
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
| 123 | 122 | lan 77 |
. . . . . . . . . . . 12
((b⊥ ∪ a) ∩ (b
∩ a⊥ )) = ((b⊥ ∪ a) ∩ (b⊥ ∪ a)⊥ ) |
| 124 | | an12 81 |
. . . . . . . . . . . 12
(b ∩ ((b⊥ ∪ a) ∩ a⊥ )) = ((b⊥ ∪ a) ∩ (b
∩ a⊥
)) |
| 125 | | dff 101 |
. . . . . . . . . . . 12
0 = ((b⊥ ∪
a) ∩ (b⊥ ∪ a)⊥ ) |
| 126 | 123, 124,
125 | 3tr1 63 |
. . . . . . . . . . 11
(b ∩ ((b⊥ ∪ a) ∩ a⊥ )) = 0 |
| 127 | 121, 126 | 2or 72 |
. . . . . . . . . 10
(((a ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) ∪ (b ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = (0 ∪
0) |
| 128 | | or0 102 |
. . . . . . . . . 10
(0 ∪ 0) = 0 |
| 129 | 127, 128 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b⊥ ) ∩ ((b⊥ ∪ a) ∩ a⊥ )) ∪ (b ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = 0 |
| 130 | 107, 129 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b⊥ ) ∪ b) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = 0 |
| 131 | 130 | lan 77 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = (((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ 0) |
| 132 | | an0 108 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ 0) = 0 |
| 133 | 131, 132 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ (((a ∩ b⊥ ) ∪ b) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = 0 |
| 134 | 103, 133 | ax-r2 36 |
. . . . 5
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b⊥ ∪ a) ∩ a⊥ )) = 0 |
| 135 | 102, 134 | 2or 72 |
. . . 4
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = ((a ∩ b⊥ ) ∪ 0) |
| 136 | 135, 100 | ax-r2 36 |
. . 3
(((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b
∩ a) ∪ (b⊥ ∩ a))) ∪ ((((a⊥ ∪ b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∩ b⊥ ) |
| 137 | 55, 136 | ax-r2 36 |
. 2
((((a⊥ ∪
b⊥ ) ∩ (a ∪ b⊥ )) ∩ ((a ∩ b⊥ ) ∪ b)) ∩ (((b
∩ a) ∪ (b⊥ ∩ a)) ∪ ((b⊥ ∪ a) ∩ a⊥ ))) = (a ∩ b⊥ ) |
| 138 | 3, 137 | ax-r2 36 |
1
((a →4 b)⊥ ∩ (b →4 a)) = (a ∩
b⊥ ) |