ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemdisj GIF version

Theorem cauappcvgprlemdisj 6903
Description: Lemma for cauappcvgpr 6914. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemdisj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.app . . . . . . 7 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
2 simpl 107 . . . . . . . . 9 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
32ralimi 2427 . . . . . . . 8 (∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
43ralimi 2427 . . . . . . 7 (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
51, 4syl 14 . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
65adantr 270 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∀𝑝Q𝑞Q (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
7 oveq1 5550 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
87breq1d 3803 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
98rexbidv 2370 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
10 cauappcvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
1110fveq2i 5212 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
12 nqex 6615 . . . . . . . . . . . . . 14 Q ∈ V
1312rabex 3930 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
1412rabex 3930 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1513, 14op1st 5804 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
1611, 15eqtri 2102 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
179, 16elrab2 2752 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1817simprbi 269 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
19 oveq2 5551 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑝))
20 fveq2 5209 . . . . . . . . . . 11 (𝑞 = 𝑝 → (𝐹𝑞) = (𝐹𝑝))
2119, 20breq12d 3806 . . . . . . . . . 10 (𝑞 = 𝑝 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑝) <Q (𝐹𝑝)))
2221cbvrexv 2579 . . . . . . . . 9 (∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
2318, 22sylib 120 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝))
24 breq2 3797 . . . . . . . . . . 11 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2524rexbidv 2370 . . . . . . . . . 10 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
2610fveq2i 5212 . . . . . . . . . . 11 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
2713, 14op2nd 5805 . . . . . . . . . . 11 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2826, 27eqtri 2102 . . . . . . . . . 10 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
2925, 28elrab2 2752 . . . . . . . . 9 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3029simprbi 269 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
3123, 30anim12i 331 . . . . . . 7 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
32 reeanv 2524 . . . . . . 7 (∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ (∃𝑝Q (𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3331, 32sylibr 132 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
3433adantl 271 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
356, 34r19.29d2r 2500 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
36 simprl 498 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q (𝐹𝑝))
37 simpl 107 . . . . . . . . . . . 12 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
3836, 37jca 300 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
3917simplbi 268 . . . . . . . . . . . . . . 15 (𝑠 ∈ (1st𝐿) → 𝑠Q)
4039adantr 270 . . . . . . . . . . . . . 14 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → 𝑠Q)
4140ad3antlr 477 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑠Q)
42 simplr 497 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑝Q)
43 addclnq 6627 . . . . . . . . . . . . 13 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) ∈ Q)
4441, 42, 43syl2anc 403 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) ∈ Q)
45 cauappcvgpr.f . . . . . . . . . . . . . 14 (𝜑𝐹:QQ)
4645ad3antrrr 476 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝐹:QQ)
4746, 42ffvelrnd 5335 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑝) ∈ Q)
48 simpr 108 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → 𝑞Q)
4946, 48ffvelrnd 5335 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝐹𝑞) ∈ Q)
50 addclnq 6627 . . . . . . . . . . . . . 14 ((𝑝Q𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
5142, 48, 50syl2anc 403 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑝 +Q 𝑞) ∈ Q)
52 addclnq 6627 . . . . . . . . . . . . 13 (((𝐹𝑞) ∈ Q ∧ (𝑝 +Q 𝑞) ∈ Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
5349, 51, 52syl2anc 403 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)
54 ltsonq 6650 . . . . . . . . . . . . 13 <Q Or Q
55 sotr 4081 . . . . . . . . . . . . 13 (( <Q Or Q ∧ ((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q)) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5654, 55mpan 415 . . . . . . . . . . . 12 (((𝑠 +Q 𝑝) ∈ Q ∧ (𝐹𝑝) ∈ Q ∧ ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∈ Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5744, 47, 53, 56syl3anc 1170 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
5838, 57syl5 32 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
59 simprr 499 . . . . . . . . . . 11 (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
6059a1i 9 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
6158, 60jcad 301 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
62 addcomnqg 6633 . . . . . . . . . . . 12 ((𝑠Q𝑝Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
6341, 42, 62syl2anc 403 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 +Q 𝑝) = (𝑝 +Q 𝑠))
64 addcomnqg 6633 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
6564adantl 271 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
66 addassnqg 6634 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6766adantl 271 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
6849, 42, 48, 65, 67caov12d 5713 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = (𝑝 +Q ((𝐹𝑞) +Q 𝑞)))
6963, 68breq12d 3806 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7069anbi1d 453 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝑠 +Q 𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7161, 70sylibd 147 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
72 addclnq 6627 . . . . . . . . . . 11 (((𝐹𝑞) ∈ Q𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
7349, 48, 72syl2anc 403 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
74 ltanqg 6652 . . . . . . . . . 10 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q𝑝Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7541, 73, 42, 74syl3anc 1170 . . . . . . . . 9 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ↔ (𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞))))
7675anbi1d 453 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) ↔ ((𝑝 +Q 𝑠) <Q (𝑝 +Q ((𝐹𝑞) +Q 𝑞)) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
7771, 76sylibrd 167 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)))
78 so2nr 4084 . . . . . . . . . 10 (( <Q Or Q ∧ (𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q)) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
7954, 78mpan 415 . . . . . . . . 9 ((𝑠Q ∧ ((𝐹𝑞) +Q 𝑞) ∈ Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8041, 73, 79syl2anc 403 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ¬ (𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
8180pm2.21d 582 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → ((𝑠 <Q ((𝐹𝑞) +Q 𝑞) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠) → ⊥))
8277, 81syld 44 . . . . . 6 ((((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) ∧ 𝑞Q) → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8382rexlimdva 2478 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ 𝑝Q) → (∃𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8483rexlimdva 2478 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ ((𝑠 +Q 𝑝) <Q (𝐹𝑝) ∧ ((𝐹𝑞) +Q 𝑞) <Q 𝑠)) → ⊥))
8535, 84mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
8685inegd 1304 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
8786ralrimivw 2436 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wfal 1290  wcel 1434  wral 2349  wrex 2350  {crab 2353  cop 3409   class class class wbr 3793   Or wor 4058  wf 4928  cfv 4932  (class class class)co 5543  1st c1st 5796  2nd c2nd 5797  Qcnq 6532   +Q cplq 6534   <Q cltq 6537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-ltnqqs 6605
This theorem is referenced by:  cauappcvgprlemcl  6905
  Copyright terms: Public domain W3C validator