MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1dvds Structured version   Visualization version   GIF version

Theorem 1dvds 15624
Description: 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
1dvds (𝑁 ∈ ℤ → 1 ∥ 𝑁)

Proof of Theorem 1dvds
StepHypRef Expression
1 zcn 11987 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mulid1d 10658 . 2 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
3 1z 12013 . . . 4 1 ∈ ℤ
4 dvds0lem 15620 . . . 4 (((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
53, 4mp3anl2 1452 . . 3 (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
65anabsan 663 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
72, 6mpdan 685 1 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114   class class class wbr 5066  (class class class)co 7156  1c1 10538   · cmul 10542  cz 11982  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rrecex 10609  ax-cnre 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-neg 10873  df-nn 11639  df-z 11983  df-dvds 15608
This theorem is referenced by:  dvds1  15669  gcdcllem1  15848  gcdcllem3  15850  lcmfunsnlem  15985  coprmproddvds  16007  1idssfct  16024  isprm2lem  16025  dvdsprime  16031  pclem  16175  prmreclem1  16252  oddvdssubg  18975  perfectlem2  25806  oddpwdc  31612  perfectALTVlem2  43936
  Copyright terms: Public domain W3C validator