Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjaN Structured version   Visualization version   GIF version

Theorem 2llnjaN 36717
Description: The join of two different lattice lines in a lattice plane equals the plane (version of 2llnjN 36718 in terms of atoms). (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnja.l = (le‘𝐾)
2llnja.j = (join‘𝐾)
2llnja.a 𝐴 = (Atoms‘𝐾)
2llnja.n 𝑁 = (LLines‘𝐾)
2llnja.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjaN ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) = 𝑊)

Proof of Theorem 2llnjaN
StepHypRef Expression
1 eqid 2821 . 2 (Base‘𝐾) = (Base‘𝐾)
2 2llnja.l . 2 = (le‘𝐾)
3 simpl1l 1220 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝐾 ∈ HL)
43hllatd 36515 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝐾 ∈ Lat)
5 simpl21 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑄𝐴)
6 simpl22 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑅𝐴)
7 2llnja.j . . . . 5 = (join‘𝐾)
8 2llnja.a . . . . 5 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 36518 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑄 𝑅) ∈ (Base‘𝐾))
11 simpl31 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆𝐴)
12 simpl32 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇𝐴)
131, 7, 8hlatjcl 36518 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
143, 11, 12, 13syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 𝑇) ∈ (Base‘𝐾))
151, 7latjcl 17661 . . 3 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
164, 10, 14, 15syl3anc 1367 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
17 simpl1r 1221 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊𝑃)
18 2llnja.p . . . 4 𝑃 = (LPlanes‘𝐾)
191, 18lplnbase 36685 . . 3 (𝑊𝑃𝑊 ∈ (Base‘𝐾))
2017, 19syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊 ∈ (Base‘𝐾))
21 simpr1 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑄 𝑅) 𝑊)
22 simpr2 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 𝑇) 𝑊)
231, 2, 7latjle12 17672 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊) ↔ ((𝑄 𝑅) (𝑆 𝑇)) 𝑊))
244, 10, 14, 20, 23syl13anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊) ↔ ((𝑄 𝑅) (𝑆 𝑇)) 𝑊))
2521, 22, 24mpbi2and 710 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) 𝑊)
261, 8atbase 36440 . . . . . . . . . 10 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
2712, 26syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇 ∈ (Base‘𝐾))
281, 7latjcl 17661 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑇) ∈ (Base‘𝐾))
294, 10, 27, 28syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) ∈ (Base‘𝐾))
301, 8atbase 36440 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3111, 30syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
321, 2, 7latlej2 17671 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 (𝑆 𝑇))
334, 31, 27, 32syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇 (𝑆 𝑇))
341, 2, 7latjlej2 17676 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑇 (𝑆 𝑇) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇))))
354, 27, 14, 10, 34syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑇 (𝑆 𝑇) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇))))
3633, 35mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇)))
371, 2, 4, 29, 16, 20, 36, 25lattrd 17668 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) 𝑊)
38373adant3 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) 𝑊)
39 simp11l 1280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝐾 ∈ HL)
40 simp121 1301 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑄𝐴)
41 simp122 1302 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑅𝐴)
42 simp132 1305 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑇𝐴)
43 simp123 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑄𝑅)
44 simp23 1204 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (𝑄 𝑅) ≠ (𝑆 𝑇))
45 simpl3 1189 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → 𝑆 (𝑄 𝑅))
46 simpr 487 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → 𝑇 (𝑄 𝑅))
471, 2, 7latjle12 17672 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
484, 31, 27, 10, 47syl13anc 1368 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
49483adant3 1128 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
5049adantr 483 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
5145, 46, 50mpbi2and 710 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑆 𝑇) (𝑄 𝑅))
52 simpl3 1189 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
532, 7, 8ps-1 36628 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇) ∧ (𝑄𝐴𝑅𝐴)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
543, 52, 5, 6, 53syl112anc 1370 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
55543adant3 1128 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
5655adantr 483 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
5751, 56mpbid 234 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑆 𝑇) = (𝑄 𝑅))
5857eqcomd 2827 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑄 𝑅) = (𝑆 𝑇))
5958ex 415 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (𝑇 (𝑄 𝑅) → (𝑄 𝑅) = (𝑆 𝑇)))
6059necon3ad 3029 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) ≠ (𝑆 𝑇) → ¬ 𝑇 (𝑄 𝑅)))
6144, 60mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ¬ 𝑇 (𝑄 𝑅))
622, 7, 8, 18lplni2 36688 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑇) ∈ 𝑃)
6339, 40, 41, 42, 43, 61, 62syl132anc 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) ∈ 𝑃)
64 simp11r 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑊𝑃)
652, 18lplncmp 36713 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑇) ∈ 𝑃𝑊𝑃) → (((𝑄 𝑅) 𝑇) 𝑊 ↔ ((𝑄 𝑅) 𝑇) = 𝑊))
6639, 63, 64, 65syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (((𝑄 𝑅) 𝑇) 𝑊 ↔ ((𝑄 𝑅) 𝑇) = 𝑊))
6738, 66mpbid 234 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) = 𝑊)
68363adant3 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇)))
6967, 68eqbrtrrd 5090 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
70693expia 1117 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 (𝑄 𝑅) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇))))
711, 7latjcl 17661 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
724, 10, 31, 71syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
731, 2, 7latlej1 17670 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑇))
744, 31, 27, 73syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆 (𝑆 𝑇))
751, 2, 7latjlej2 17676 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑆 (𝑆 𝑇) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇))))
764, 31, 14, 10, 75syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 (𝑆 𝑇) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇))))
7774, 76mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇)))
781, 2, 4, 72, 16, 20, 77, 25lattrd 17668 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) 𝑊)
79783adant3 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) 𝑊)
80 simp11l 1280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝐾 ∈ HL)
81 simp121 1301 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑄𝐴)
82 simp122 1302 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑅𝐴)
83 simp131 1304 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑆𝐴)
84 simp123 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑄𝑅)
85 simp3 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ¬ 𝑆 (𝑄 𝑅))
862, 7, 8, 18lplni2 36688 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
8780, 81, 82, 83, 84, 85, 86syl132anc 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
88 simp11r 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑊𝑃)
892, 18lplncmp 36713 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑆) ∈ 𝑃𝑊𝑃) → (((𝑄 𝑅) 𝑆) 𝑊 ↔ ((𝑄 𝑅) 𝑆) = 𝑊))
9080, 87, 88, 89syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → (((𝑄 𝑅) 𝑆) 𝑊 ↔ ((𝑄 𝑅) 𝑆) = 𝑊))
9179, 90mpbid 234 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) = 𝑊)
92773adant3 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇)))
9391, 92eqbrtrrd 5090 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
94933expia 1117 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (¬ 𝑆 (𝑄 𝑅) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇))))
9570, 94pm2.61d 181 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
961, 2, 4, 16, 20, 25, 95latasymd 17667 1 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501  LLinesclln 36642  LPlanesclpl 36643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650
This theorem is referenced by:  2llnjN  36718
  Copyright terms: Public domain W3C validator