Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  8gbe Structured version   Visualization version   GIF version

Theorem 8gbe 43958
Description: 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
8gbe 8 ∈ GoldbachEven

Proof of Theorem 8gbe
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 8even 43898 . 2 8 ∈ Even
2 5prm 16442 . . 3 5 ∈ ℙ
3 3prm 16038 . . 3 3 ∈ ℙ
4 5odd 43895 . . . 4 5 ∈ Odd
5 3odd 43893 . . . 4 3 ∈ Odd
6 5p3e8 11795 . . . . 5 (5 + 3) = 8
76eqcomi 2830 . . . 4 8 = (5 + 3)
84, 5, 73pm3.2i 1335 . . 3 (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))
9 eleq1 2900 . . . . 5 (𝑝 = 5 → (𝑝 ∈ Odd ↔ 5 ∈ Odd ))
10 biidd 264 . . . . 5 (𝑝 = 5 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd ))
11 oveq1 7163 . . . . . 6 (𝑝 = 5 → (𝑝 + 𝑞) = (5 + 𝑞))
1211eqeq2d 2832 . . . . 5 (𝑝 = 5 → (8 = (𝑝 + 𝑞) ↔ 8 = (5 + 𝑞)))
139, 10, 123anbi123d 1432 . . . 4 (𝑝 = 5 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) ↔ (5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞))))
14 biidd 264 . . . . 5 (𝑞 = 3 → (5 ∈ Odd ↔ 5 ∈ Odd ))
15 eleq1 2900 . . . . 5 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
16 oveq2 7164 . . . . . 6 (𝑞 = 3 → (5 + 𝑞) = (5 + 3))
1716eqeq2d 2832 . . . . 5 (𝑞 = 3 → (8 = (5 + 𝑞) ↔ 8 = (5 + 3)))
1814, 15, 173anbi123d 1432 . . . 4 (𝑞 = 3 → ((5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)) ↔ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))))
1913, 18rspc2ev 3635 . . 3 ((5 ∈ ℙ ∧ 3 ∈ ℙ ∧ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)))
202, 3, 8, 19mp3an 1457 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))
21 isgbe 43936 . 2 (8 ∈ GoldbachEven ↔ (8 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))))
221, 20, 21mpbir2an 709 1 8 ∈ GoldbachEven
Colors of variables: wff setvar class
Syntax hints:  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  (class class class)co 7156   + caddc 10540  3c3 11694  5c5 11696  8c8 11699  cprime 16015   Even ceven 43809   Odd codd 43810   GoldbachEven cgbe 43930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016  df-even 43811  df-odd 43812  df-gbe 43933
This theorem is referenced by:  nnsum3primesle9  43979
  Copyright terms: Public domain W3C validator