MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   GIF version

Theorem affineequiv 25401
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
2 affineequiv.d . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
32, 1mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
4 affineequiv.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
52, 4mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
61, 3, 5subsubd 11025 . . . . . . 7 (𝜑 → (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))) = ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)))
71, 3subcld 10997 . . . . . . . 8 (𝜑 → (𝐶 − (𝐷 · 𝐶)) ∈ ℂ)
87, 5addcomd 10842 . . . . . . 7 (𝜑 → ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
96, 8eqtr2d 2857 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
10 1cnd 10636 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
1110, 2, 1subdird 11097 . . . . . . . 8 (𝜑 → ((1 − 𝐷) · 𝐶) = ((1 · 𝐶) − (𝐷 · 𝐶)))
121mulid2d 10659 . . . . . . . . 9 (𝜑 → (1 · 𝐶) = 𝐶)
1312oveq1d 7171 . . . . . . . 8 (𝜑 → ((1 · 𝐶) − (𝐷 · 𝐶)) = (𝐶 − (𝐷 · 𝐶)))
1411, 13eqtrd 2856 . . . . . . 7 (𝜑 → ((1 − 𝐷) · 𝐶) = (𝐶 − (𝐷 · 𝐶)))
1514oveq2d 7172 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
16 affineequiv.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
171, 16subcld 10997 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
181, 4subcld 10997 . . . . . . . . 9 (𝜑 → (𝐶𝐴) ∈ ℂ)
192, 18mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
2016, 17, 19addsubassd 11017 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2116, 1pncan3d 11000 . . . . . . . 8 (𝜑 → (𝐵 + (𝐶𝐵)) = 𝐶)
222, 1, 4subdid 11096 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) = ((𝐷 · 𝐶) − (𝐷 · 𝐴)))
2321, 22oveq12d 7174 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
2420, 23eqtr3d 2858 . . . . . 6 (𝜑 → (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
259, 15, 243eqtr4d 2866 . . . . 5 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2625eqeq2d 2832 . . . 4 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
2716addid1d 10840 . . . . 5 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqeq1d 2823 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
29 0cnd 10634 . . . . 5 (𝜑 → 0 ∈ ℂ)
3017, 19subcld 10997 . . . . 5 (𝜑 → ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ∈ ℂ)
3116, 29, 30addcand 10843 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
3226, 28, 313bitr2d 309 . . 3 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
33 eqcom 2828 . . 3 (0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0)
3432, 33syl6bb 289 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0))
3517, 19subeq0ad 11007 . 2 (𝜑 → (((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0 ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
3634, 35bitrd 281 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872
This theorem is referenced by:  affineequiv2  25402  affineequiv3  25403  angpieqvd  25409  chordthmlem2  25411  chordthmlem4  25413
  Copyright terms: Public domain W3C validator