MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubassd Structured version   Visualization version   GIF version

Theorem addsubassd 10624
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addsubassd (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))

Proof of Theorem addsubassd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addsubass 10503 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
51, 2, 3, 4syl3anc 1477 1 (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  (class class class)co 6814  cc 10146   + caddc 10151  cmin 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480
This theorem is referenced by:  mulsubdivbinom2  13260  hashun3  13385  swrdccatin2  13707  incexclem  14787  bpoly4  15009  gsumccat  17599  mndodconglem  18180  efgredleme  18376  ovollb2lem  23476  ovolunlem1  23485  ply1divex  24115  tangtx  24477  tanarg  24585  affineequiv  24773  chordthmlem4  24782  heron  24785  dquartlem2  24799  quart  24808  atanlogsublem  24862  chtublem  25156  bposlem9  25237  2lgslem3b  25342  2lgslem3c  25343  2lgslem3d  25344  dchrisum0re  25422  mulog2sumlem1  25443  selberglem2  25455  selberg4  25470  selbergr  25477  selberg3r  25478  selberg34r  25480  brbtwn2  26005  ax5seglem2  26029  wwlksnextwrd  27036  wwlksnextinj  27038  clwwlkccatlem  27133  ex-ind-dvds  27650  lt2addrd  29846  archirngz  30073  fibp1  30793  dnibndlem10  32804  bj-bary1lem  33489  acongeq  38070  jm3.1lem2  38105  inductionexd  38973  fzisoeu  40031  sumnnodd  40383  stoweidlem26  40764  wallispilem4  40806  wallispi2lem1  40809  wallispi2lem2  40810  fourierdlem26  40871  fourierdlem41  40886  fourierdlem42  40887  fourierdlem48  40892  fourierdlem63  40907  fourierdlem107  40951  smfmullem1  41522  fmtnorec2lem  41982  fmtnorec3  41988  lighneallem3  42052  bgoldbtbndlem2  42222  m1modmmod  42844  assraddsubd  43048
  Copyright terms: Public domain W3C validator