Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval0 Structured version   Visualization version   GIF version

Theorem ballotlemfval0 30338
Description: (𝐹𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfval0 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval0
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 0zd 11333 . . 3 (𝐶𝑂 → 0 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 30332 . 2 (𝐶𝑂 → ((𝐹𝐶)‘0) = ((#‘((1...0) ∩ 𝐶)) − (#‘((1...0) ∖ 𝐶))))
9 fz10 12304 . . . . . . . 8 (1...0) = ∅
109ineq1i 3788 . . . . . . 7 ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶)
11 incom 3783 . . . . . . 7 (𝐶 ∩ ∅) = (∅ ∩ 𝐶)
12 in0 3940 . . . . . . 7 (𝐶 ∩ ∅) = ∅
1310, 11, 123eqtr2i 2649 . . . . . 6 ((1...0) ∩ 𝐶) = ∅
1413fveq2i 6151 . . . . 5 (#‘((1...0) ∩ 𝐶)) = (#‘∅)
15 hash0 13098 . . . . 5 (#‘∅) = 0
1614, 15eqtri 2643 . . . 4 (#‘((1...0) ∩ 𝐶)) = 0
179difeq1i 3702 . . . . . . 7 ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶)
18 0dif 3949 . . . . . . 7 (∅ ∖ 𝐶) = ∅
1917, 18eqtri 2643 . . . . . 6 ((1...0) ∖ 𝐶) = ∅
2019fveq2i 6151 . . . . 5 (#‘((1...0) ∖ 𝐶)) = (#‘∅)
2120, 15eqtri 2643 . . . 4 (#‘((1...0) ∖ 𝐶)) = 0
2216, 21oveq12i 6616 . . 3 ((#‘((1...0) ∩ 𝐶)) − (#‘((1...0) ∖ 𝐶))) = (0 − 0)
23 0m0e0 11074 . . 3 (0 − 0) = 0
2422, 23eqtri 2643 . 2 ((#‘((1...0) ∩ 𝐶)) − (#‘((1...0) ∖ 𝐶))) = 0
258, 24syl6eq 2671 1 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  cdif 3552  cin 3554  c0 3891  𝒫 cpw 4130  cmpt 4673  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210   / cdiv 10628  cn 10964  cz 11321  ...cfz 12268  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058
This theorem is referenced by:  ballotlem4  30341  ballotlemi1  30345  ballotlemii  30346  ballotlemic  30349  ballotlem1c  30350
  Copyright terms: Public domain W3C validator