Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blbnd Structured version   Visualization version   GIF version

Theorem blbnd 33557
 Description: A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbnd ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))

Proof of Theorem blbnd
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → 𝑀 ∈ (∞Met‘𝑋))
2 rexr 10070 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
3 blssm 22204 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
42, 3syl3an3 1359 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
5 xmetres2 22147 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
61, 4, 5syl2anc 692 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
76adantr 481 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
8 rzal 4064 . . . 4 ((𝑌(ball‘𝑀)𝑅) = ∅ → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
98adantl 482 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
10 isbndx 33552 . . 3 ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
117, 9, 10sylanbrc 697 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
126adantr 481 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
131adantr 481 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑀 ∈ (∞Met‘𝑋))
14 simpl2 1063 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌𝑋)
15 simpl3 1064 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ)
16 xbln0 22200 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
172, 16syl3an3 1359 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
1817biimpa 501 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 0 < 𝑅)
1915, 18elrpd 11854 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ+)
20 blcntr 22199 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ+) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2113, 14, 19, 20syl3anc 1324 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2214, 21elind 3790 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)))
2315rexrd 10074 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ*)
24 eqid 2620 . . . . . . . 8 (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) = (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅)))
2524blres 22217 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
2613, 22, 23, 25syl3anc 1324 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
27 inidm 3814 . . . . . 6 ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)) = (𝑌(ball‘𝑀)𝑅)
2826, 27syl6req 2671 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅))
29 rspceov 6677 . . . . 5 ((𝑌 ∈ (𝑌(ball‘𝑀)𝑅) ∧ 𝑅 ∈ ℝ+ ∧ (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
3021, 19, 28, 29syl3anc 1324 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
31 isbnd2 33553 . . . 4 (((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
3212, 30, 31sylanbrc 697 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅))
3332simpld 475 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
3411, 33pm2.61dane 2878 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   ≠ wne 2791  ∀wral 2909  ∃wrex 2910   ∩ cin 3566   ⊆ wss 3567  ∅c0 3907   class class class wbr 4644   × cxp 5102   ↾ cres 5106  ‘cfv 5876  (class class class)co 6635  ℝcr 9920  0cc0 9921  ℝ*cxr 10058   < clt 10059  ℝ+crp 11817  ∞Metcxmt 19712  ballcbl 19714  Bndcbnd 33537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-er 7727  df-ec 7729  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-2 11064  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-bnd 33549 This theorem is referenced by:  ssbnd  33558  prdsbnd2  33565
 Copyright terms: Public domain W3C validator