MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3 Structured version   Visualization version   GIF version

Theorem cau3 14715
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 14705 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
cau3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑚)   𝑍(𝑚)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4 𝑍 = (ℤ𝑀)
2 uzssz 12265 . . . 4 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 4001 . . 3 𝑍 ⊆ ℤ
4 id 22 . . 3 ((𝐹𝑘) ∈ ℂ → (𝐹𝑘) ∈ ℂ)
5 eleq1 2900 . . 3 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
6 eleq1 2900 . . 3 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
7 abssub 14686 . . . 4 (((𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
873adant1 1126 . . 3 ((⊤ ∧ (𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
9 abssub 14686 . . . 4 (((𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
1093adant1 1126 . . 3 ((⊤ ∧ (𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
11 abs3lem 14698 . . . 4 ((((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
12113adant1 1126 . . 3 ((⊤ ∧ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
133, 4, 5, 6, 8, 10, 12cau3lem 14714 . 2 (⊤ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
1413mptru 1544 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536   < clt 10675  cmin 10870   / cdiv 11297  2c2 11693  cz 11982  cuz 12244  +crp 12390  abscabs 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by:  cau4  14716  serf0  15037
  Copyright terms: Public domain W3C validator