Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Structured version   Visualization version   GIF version

Theorem cdleme22cN 37510
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ v p q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22cN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1280 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ HL)
21hllatd 36532 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ Lat)
3 simp12l 1282 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝐴)
4 simp13 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑄𝐴)
5 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdleme22.j . . . . . 6 = (join‘𝐾)
7 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 36535 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp11r 1281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊𝐻)
11 cdleme22.h . . . . . 6 𝐻 = (LHyp‘𝐾)
125, 11lhpbase 37166 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1310, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
14 cdleme22.l . . . . 5 = (le‘𝐾)
15 cdleme22.m . . . . 5 = (meet‘𝐾)
165, 14, 15latmle2 17670 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
172, 9, 13, 16syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
18 simp21r 1287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑆 𝑊)
19 nbrne2 5072 . . 3 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ 𝑆 𝑊) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
2017, 18, 19syl2anc 586 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
21 simp32l 1294 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑇 𝑉))
2221adantr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 𝑉))
231adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝐾 ∈ HL)
2410adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑊𝐻)
25 simpl12 1245 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl13 1246 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑄𝐴)
27 simp31l 1292 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝑄)
2827adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑃𝑄)
29 simp23l 1290 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉𝐴)
3029adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉𝐴)
31 simp23r 1291 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉 𝑊)
3231adantr 483 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 𝑊)
33 simpr 487 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 (𝑃 𝑄))
34 eqid 2821 . . . . . . . . . . . 12 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
3514, 6, 15, 7, 11, 34cdleme22aa 37507 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = ((𝑃 𝑄) 𝑊))
3623, 24, 25, 26, 28, 30, 32, 33, 35syl233anc 1395 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 = ((𝑃 𝑄) 𝑊))
3736oveq2d 7158 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑇 𝑉) = (𝑇 ((𝑃 𝑄) 𝑊)))
3822, 37breqtrd 5078 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 ((𝑃 𝑄) 𝑊)))
39 simp32r 1295 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑃 𝑄))
4039adantr 483 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
41 simp21l 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝐴)
425, 7atbase 36457 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4341, 42syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
44 simp22 1203 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇𝐴)
45 simp12r 1283 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑃 𝑊)
4614, 6, 15, 7, 11lhpat 37211 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
471, 10, 3, 45, 4, 27, 46syl222anc 1382 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
485, 6, 7hlatjcl 36535 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
491, 44, 47, 48syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
505, 14, 15latlem12 17671 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
512, 43, 49, 9, 50syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5251adantr 483 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5338, 40, 52mpbi2and 710 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
54 simp31r 1293 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝑇)
5541, 44, 543jca 1124 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
56 simp33 1207 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
5756, 21, 393jca 1124 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))
5814, 6, 15, 7, 11cdleme22b 37509 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
591, 55, 3, 4, 27, 29, 57, 58syl232anc 1393 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑇 (𝑃 𝑄))
60 hlatl 36528 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
611, 60syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ AtLat)
62 eqid 2821 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
635, 14, 15, 62, 7atnle 36485 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6461, 44, 9, 63syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6559, 64mpbid 234 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 (𝑃 𝑄)) = (0.‘𝐾))
6665oveq1d 7157 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
675, 7atbase 36457 . . . . . . . . . . 11 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
6844, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇 ∈ (Base‘𝐾))
695, 14, 15latmle1 17669 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
702, 9, 13, 69syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
715, 14, 6, 15, 7atmod4i1 37034 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑊) ∈ 𝐴𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) (𝑃 𝑄)) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
721, 47, 68, 9, 70, 71syl131anc 1379 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
73 hlol 36529 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
741, 73syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ OL)
755, 15latmcl 17645 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
762, 9, 13, 75syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
775, 6, 62olj02 36394 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7874, 76, 77syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7966, 72, 783eqtr3d 2864 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8079adantr 483 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8153, 80breqtrd 5078 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑃 𝑄) 𝑊))
8214, 7atcmp 36479 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑆𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8361, 41, 47, 82syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8483adantr 483 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8581, 84mpbid 234 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 = ((𝑃 𝑄) 𝑊))
8685eqcomd 2827 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) = 𝑆)
8786ex 415 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑉 (𝑃 𝑄) → ((𝑃 𝑄) 𝑊) = 𝑆))
8887necon3ad 3029 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑃 𝑄) 𝑊) ≠ 𝑆 → ¬ 𝑉 (𝑃 𝑄)))
8920, 88mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5052  cfv 6341  (class class class)co 7142  Basecbs 16466  lecple 16555  joincjn 17537  meetcmee 17538  0.cp0 17630  Latclat 17638  OLcol 36342  Atomscatm 36431  AtLatcal 36432  HLchlt 36518  LHypclh 37152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-1st 7675  df-2nd 7676  df-proset 17521  df-poset 17539  df-plt 17551  df-lub 17567  df-glb 17568  df-join 17569  df-meet 17570  df-p0 17632  df-p1 17633  df-lat 17639  df-clat 17701  df-oposet 36344  df-ol 36346  df-oml 36347  df-covers 36434  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-llines 36666  df-psubsp 36671  df-pmap 36672  df-padd 36964  df-lhyp 37156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator