MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnvm Structured version   Visualization version   GIF version

Theorem cnnvm 26746
Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnvm.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cnnvm − = ( −𝑣𝑈)

Proof of Theorem cnnvm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulm1 10323 . . . . . 6 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
21adantl 480 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
32oveq2d 6543 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
4 negsub 10181 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
53, 4eqtr2d 2644 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥 + (-1 · 𝑦)))
65mpt2eq3ia 6596 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦)))
7 subf 10135 . . . 4 − :(ℂ × ℂ)⟶ℂ
8 ffn 5944 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
97, 8ax-mp 5 . . 3 − Fn (ℂ × ℂ)
10 fnov 6644 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
119, 10mpbi 218 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
12 cnnvm.6 . . . 4 𝑈 = ⟨⟨ + , · ⟩, abs⟩
1312cnnv 26740 . . 3 𝑈 ∈ NrmCVec
1412cnnvba 26742 . . . 4 ℂ = (BaseSet‘𝑈)
1512cnnvg 26741 . . . 4 + = ( +𝑣𝑈)
1612cnnvs 26744 . . . 4 · = ( ·𝑠OLD𝑈)
17 eqid 2609 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
1814, 15, 16, 17nvmfval 26697 . . 3 (𝑈 ∈ NrmCVec → ( −𝑣𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦))))
1913, 18ax-mp 5 . 2 ( −𝑣𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦)))
206, 11, 193eqtr4i 2641 1 − = ( −𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1976  cop 4130   × cxp 5026   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  cmpt2 6529  cc 9791  1c1 9794   + caddc 9796   · cmul 9798  cmin 10118  -cneg 10119  abscabs 13771  NrmCVeccnv 26635  𝑣 cnsb 26640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26580  df-vc 26595  df-nv 26643  df-va 26646  df-ba 26647  df-sm 26648  df-0v 26649  df-vs 26650  df-nmcv 26651
This theorem is referenced by:  cnims  26761
  Copyright terms: Public domain W3C validator