MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1ae0 Structured version   Visualization version   GIF version

Theorem coe1ae0 20384
Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
coe1ae0.a 𝐴 = (coe1𝐹)
coe1ae0.b 𝐵 = (Base‘𝑃)
coe1ae0.p 𝑃 = (Poly1𝑅)
coe1ae0.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1ae0 (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 ))
Distinct variable groups:   𝐴,𝑛,𝑠   0 ,𝑛,𝑠
Allowed substitution hints:   𝐵(𝑛,𝑠)   𝑃(𝑛,𝑠)   𝑅(𝑛,𝑠)   𝐹(𝑛,𝑠)

Proof of Theorem coe1ae0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 coe1ae0.a . . 3 𝐴 = (coe1𝐹)
2 coe1ae0.b . . 3 𝐵 = (Base‘𝑃)
3 coe1ae0.p . . 3 𝑃 = (Poly1𝑅)
4 coe1ae0.z . . 3 0 = (0g𝑅)
5 eqid 2821 . . 3 (Base‘𝑅) = (Base‘𝑅)
61, 2, 3, 4, 5coe1fsupp 20382 . 2 (𝐹𝐵𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 })
7 breq1 5069 . . . 4 (𝑎 = 𝐴 → (𝑎 finSupp 0𝐴 finSupp 0 ))
87elrab 3680 . . 3 (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 } ↔ (𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐴 finSupp 0 ))
94fvexi 6684 . . . . . 6 0 ∈ V
109a1i 11 . . . . 5 (𝐹𝐵0 ∈ V)
11 fsuppmapnn0ub 13364 . . . . 5 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
1210, 11sylan2 594 . . . 4 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐹𝐵) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
1312impancom 454 . . 3 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐴 finSupp 0 ) → (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
148, 13sylbi 219 . 2 (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 } → (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
156, 14mpcom 38 1 (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494   class class class wbr 5066  cfv 6355  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833   < clt 10675  0cn0 11898  Basecbs 16483  0gc0g 16713  Poly1cpl1 20345  coe1cco1 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-ple 16585  df-psr 20136  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-ply1 20350  df-coe1 20351
This theorem is referenced by:  pmatcollpw1lem1  21382  ply1mulgsumlem1  44460
  Copyright terms: Public domain W3C validator