![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > deccarry | Structured version Visualization version GIF version |
Description: Add 1 to a 2 digit number with carry. This is a special case of decsucc 11740, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g. by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
Ref | Expression |
---|---|
deccarry | ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 11684 | . 2 ⊢ ;(𝐴 + 1)0 = (((9 + 1) · (𝐴 + 1)) + 0) | |
2 | 9nn 11382 | . . . . . . . 8 ⊢ 9 ∈ ℕ | |
3 | peano2nn 11222 | . . . . . . . 8 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (9 + 1) ∈ ℕ |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℕ) |
6 | peano2nn 11222 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
7 | 5, 6 | nnmulcld 11258 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℕ) |
8 | 7 | nncnd 11226 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) ∈ ℂ) |
9 | 8 | addid1d 10426 | . . 3 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = ((9 + 1) · (𝐴 + 1))) |
10 | 4 | nncni 11220 | . . . . . 6 ⊢ (9 + 1) ∈ ℂ |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (9 + 1) ∈ ℂ) |
12 | nncn 11218 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
13 | 1cnd 10246 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 1 ∈ ℂ) | |
14 | 11, 12, 13 | adddid 10254 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (((9 + 1) · 𝐴) + ((9 + 1) · 1))) |
15 | 11 | mulid1d 10247 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 1) = (9 + 1)) |
16 | 15 | oveq2d 6827 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (((9 + 1) · 𝐴) + (9 + 1))) |
17 | df-dec 11684 | . . . . . . 7 ⊢ ;𝐴9 = (((9 + 1) · 𝐴) + 9) | |
18 | 17 | oveq1i 6821 | . . . . . 6 ⊢ (;𝐴9 + 1) = ((((9 + 1) · 𝐴) + 9) + 1) |
19 | id 22 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
20 | 5, 19 | nnmulcld 11258 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℕ) |
21 | 20 | nncnd 11226 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · 𝐴) ∈ ℂ) |
22 | 2 | nncni 11220 | . . . . . . . 8 ⊢ 9 ∈ ℂ |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 9 ∈ ℂ) |
24 | 21, 23, 13 | addassd 10252 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((((9 + 1) · 𝐴) + 9) + 1) = (((9 + 1) · 𝐴) + (9 + 1))) |
25 | 18, 24 | syl5req 2805 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + (9 + 1)) = (;𝐴9 + 1)) |
26 | 16, 25 | eqtrd 2792 | . . . 4 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · 𝐴) + ((9 + 1) · 1)) = (;𝐴9 + 1)) |
27 | 14, 26 | eqtrd 2792 | . . 3 ⊢ (𝐴 ∈ ℕ → ((9 + 1) · (𝐴 + 1)) = (;𝐴9 + 1)) |
28 | 9, 27 | eqtrd 2792 | . 2 ⊢ (𝐴 ∈ ℕ → (((9 + 1) · (𝐴 + 1)) + 0) = (;𝐴9 + 1)) |
29 | 1, 28 | syl5req 2805 | 1 ⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 (class class class)co 6811 ℂcc 10124 0cc0 10126 1c1 10127 + caddc 10129 · cmul 10131 ℕcn 11210 9c9 11267 ;cdc 11683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-ov 6814 df-om 7229 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-ltxr 10269 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-dec 11684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |