![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6049 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 221 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5409 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4005 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3668 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 5930 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 975 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊆ wss 3607 ∅c0 3948 ran crn 5144 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 |
This theorem is referenced by: f00 6125 f0bi 6126 f10 6207 map0g 7939 ac6sfi 8245 oif 8476 wrd0 13362 0csh0 13585 ram0 15773 0ssc 16544 0subcat 16545 gsum0 17325 ga0 17777 0frgp 18238 ptcmpfi 21664 0met 22218 perfdvf 23712 uhgr0e 26011 uhgr0 26013 griedg0prc 26201 locfinref 30036 matunitlindf 33537 poimirlem28 33567 mapdm0OLD 39697 climlimsupcex 40319 0cnf 40408 dvnprodlem3 40481 mbf0 40491 sge00 40911 hoidmvlelem3 41132 |
Copyright terms: Public domain | W3C validator |