MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcadd Structured version   Visualization version   GIF version

Theorem sadcadd 15807
Description: Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadcadd (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcadd
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fveq2 6670 . . . . . 6 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
32eleq2d 2898 . . . . 5 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
4 oveq2 7164 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
5 2cn 11713 . . . . . . . 8 2 ∈ ℂ
6 exp0 13434 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
75, 6ax-mp 5 . . . . . . 7 (2↑0) = 1
84, 7syl6eq 2872 . . . . . 6 (𝑥 = 0 → (2↑𝑥) = 1)
9 oveq2 7164 . . . . . . . . . . . . 13 (𝑥 = 0 → (0..^𝑥) = (0..^0))
10 fzo0 13062 . . . . . . . . . . . . 13 (0..^0) = ∅
119, 10syl6eq 2872 . . . . . . . . . . . 12 (𝑥 = 0 → (0..^𝑥) = ∅)
1211ineq2d 4189 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
13 in0 4345 . . . . . . . . . . 11 (𝐴 ∩ ∅) = ∅
1412, 13syl6eq 2872 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
1514fveq2d 6674 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
16 sadcadd.k . . . . . . . . . . 11 𝐾 = (bits ↾ ℕ0)
17 0nn0 11913 . . . . . . . . . . . . 13 0 ∈ ℕ0
18 fvres 6689 . . . . . . . . . . . . 13 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((bits ↾ ℕ0)‘0) = (bits‘0)
20 0bits 15788 . . . . . . . . . . . 12 (bits‘0) = ∅
2119, 20eqtr2i 2845 . . . . . . . . . . 11 ∅ = ((bits ↾ ℕ0)‘0)
2216, 21fveq12i 6676 . . . . . . . . . 10 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
23 bitsf1o 15794 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
24 f1ocnvfv1 7033 . . . . . . . . . . 11 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
2523, 17, 24mp2an 690 . . . . . . . . . 10 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
2622, 25eqtri 2844 . . . . . . . . 9 (𝐾‘∅) = 0
2715, 26syl6eq 2872 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
2811ineq2d 4189 . . . . . . . . . . 11 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
29 in0 4345 . . . . . . . . . . 11 (𝐵 ∩ ∅) = ∅
3028, 29syl6eq 2872 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3130fveq2d 6674 . . . . . . . . 9 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3231, 26syl6eq 2872 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3327, 32oveq12d 7174 . . . . . . 7 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
34 00id 10815 . . . . . . 7 (0 + 0) = 0
3533, 34syl6eq 2872 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
368, 35breq12d 5079 . . . . 5 (𝑥 = 0 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ 1 ≤ 0))
373, 36bibi12d 348 . . . 4 (𝑥 = 0 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0)))
3837imbi2d 343 . . 3 (𝑥 = 0 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))))
39 fveq2 6670 . . . . . 6 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4039eleq2d 2898 . . . . 5 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
41 oveq2 7164 . . . . . 6 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
42 oveq2 7164 . . . . . . . . 9 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4342ineq2d 4189 . . . . . . . 8 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
4443fveq2d 6674 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
4542ineq2d 4189 . . . . . . . 8 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
4645fveq2d 6674 . . . . . . 7 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
4744, 46oveq12d 7174 . . . . . 6 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
4841, 47breq12d 5079 . . . . 5 (𝑥 = 𝑘 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
4940, 48bibi12d 348 . . . 4 (𝑥 = 𝑘 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
5049imbi2d 343 . . 3 (𝑥 = 𝑘 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))))
51 fveq2 6670 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
5251eleq2d 2898 . . . . 5 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
53 oveq2 7164 . . . . . 6 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
54 oveq2 7164 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5554ineq2d 4189 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
5655fveq2d 6674 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
5754ineq2d 4189 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
5857fveq2d 6674 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
5956, 58oveq12d 7174 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6053, 59breq12d 5079 . . . . 5 (𝑥 = (𝑘 + 1) → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
6152, 60bibi12d 348 . . . 4 (𝑥 = (𝑘 + 1) → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
6261imbi2d 343 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
63 fveq2 6670 . . . . . 6 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
6463eleq2d 2898 . . . . 5 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
65 oveq2 7164 . . . . . 6 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
66 oveq2 7164 . . . . . . . . 9 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
6766ineq2d 4189 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
6867fveq2d 6674 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
6966ineq2d 4189 . . . . . . . 8 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
7069fveq2d 6674 . . . . . . 7 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
7168, 70oveq12d 7174 . . . . . 6 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
7265, 71breq12d 5079 . . . . 5 (𝑥 = 𝑁 → ((2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
7364, 72bibi12d 348 . . . 4 (𝑥 = 𝑁 → ((∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
7473imbi2d 343 . . 3 (𝑥 = 𝑁 → ((𝜑 → (∅ ∈ (𝐶𝑥) ↔ (2↑𝑥) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))))) ↔ (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))))
75 sadval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
76 sadval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
77 sadval.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
7875, 76, 77sadc0 15803 . . . 4 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
79 0lt1 11162 . . . . . 6 0 < 1
80 0re 10643 . . . . . . 7 0 ∈ ℝ
81 1re 10641 . . . . . . 7 1 ∈ ℝ
8280, 81ltnlei 10761 . . . . . 6 (0 < 1 ↔ ¬ 1 ≤ 0)
8379, 82mpbi 232 . . . . 5 ¬ 1 ≤ 0
8483a1i 11 . . . 4 (𝜑 → ¬ 1 ≤ 0)
8578, 842falsed 379 . . 3 (𝜑 → (∅ ∈ (𝐶‘0) ↔ 1 ≤ 0))
8675ad2antrr 724 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐴 ⊆ ℕ0)
8776ad2antrr 724 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝐵 ⊆ ℕ0)
88 simplr 767 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → 𝑘 ∈ ℕ0)
89 simpr 487 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
9086, 87, 77, 88, 16, 89sadcaddlem 15806 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9190ex 415 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
9291expcom 416 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9392a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (∅ ∈ (𝐶𝑘) ↔ (2↑𝑘) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))) → (𝜑 → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ (2↑(𝑘 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))))
9438, 50, 62, 74, 85, 93nn0ind 12078 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
951, 94mpcom 38 1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  caddwcad 1607  wcel 2114  cin 3935  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539   class class class wbr 5066  cmpt 5146  ccnv 5554  cres 5557  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cmpo 7158  1oc1o 8095  2oc2o 8096  Fincfn 8509  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  2c2 11693  0cn0 11898  ..^cfzo 13034  seqcseq 13370  cexp 13430  bitscbits 15768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-fal 1550  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-bits 15771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator