MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsetcestrc Structured version   Visualization version   GIF version

Theorem fthsetcestrc 17415
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fthsetcestrc (𝜑𝐹(𝑆 Faith 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 17414 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 17412 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2821 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
121, 4setcbas 17338 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝑆))
1312, 2syl6reqr 2875 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 = 𝑈)
1413eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐶𝑎𝑈))
1514biimpcd 251 . . . . . . . . . . . . . . 15 (𝑎𝐶 → (𝜑𝑎𝑈))
1615adantr 483 . . . . . . . . . . . . . 14 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
1716impcom 410 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
1813eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐶𝑏𝑈))
1918biimpcd 251 . . . . . . . . . . . . . . 15 (𝑏𝐶 → (𝜑𝑏𝑈))
2019adantl 484 . . . . . . . . . . . . . 14 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
2120impcom 410 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
221, 10, 11, 17, 21setchom 17340 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
2322eleq2d 2898 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ ∈ (𝑏m 𝑎)))
241, 2, 3, 4, 5, 6funcsetcestrclem6 17410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘) = )
25243expia 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) → ((𝑎𝐺𝑏)‘) = ))
2623, 25sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2726com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘) = ))
2827adantr 483 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘) = ))
2928impcom 410 . . . . . . 7 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3022eleq2d 2898 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) ↔ 𝑘 ∈ (𝑏m 𝑎)))
311, 2, 3, 4, 5, 6funcsetcestrclem6 17410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
32313expia 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑏m 𝑎) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3330, 32sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3433com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3534adantl 484 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)) → ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635impcom 410 . . . . . . 7 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3729, 36eqeq12d 2837 . . . . . 6 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
3837biimpd 231 . . . . 5 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
3938ralrimivva 3191 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
40 dff13 7013 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝑆)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
419, 39, 40sylanbrc 585 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
4241ralrimivva 3191 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
43 eqid 2821 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
442, 11, 43isfth2 17185 . 2 (𝐹(𝑆 Faith 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
458, 42, 44sylanbrc 585 1 (𝜑𝐹(𝑆 Faith 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146   I cid 5459  cres 5557  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  cmpo 7158  ωcom 7580  m cmap 8406  WUnicwun 10122  ndxcnx 16480  Basecbs 16483  Hom chom 16576   Func cfunc 17124   Faith cfth 17173  SetCatcsetc 17335  ExtStrCatcestrc 17372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-plp 10405  df-ltp 10407  df-enr 10477  df-nr 10478  df-c 10543  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-func 17128  df-fth 17175  df-setc 17336  df-estrc 17373
This theorem is referenced by:  embedsetcestrc  17417
  Copyright terms: Public domain W3C validator