MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnge1 Structured version   Visualization version   GIF version

Theorem nnge1 11084
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)

Proof of Theorem nnge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . 2 (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1))
2 breq2 4689 . 2 (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦))
3 breq2 4689 . 2 (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1)))
4 breq2 4689 . 2 (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴))
5 1le1 10693 . 2 1 ≤ 1
6 nnre 11065 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7 recn 10064 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87addid1d 10274 . . . . 5 (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦)
98breq2d 4697 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦))
10 0lt1 10588 . . . . . . . 8 0 < 1
11 0re 10078 . . . . . . . . 9 0 ∈ ℝ
12 1re 10077 . . . . . . . . 9 1 ∈ ℝ
13 axltadd 10149 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1411, 12, 13mp3an12 1454 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1510, 14mpi 20 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1))
16 readdcl 10057 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ)
1711, 16mpan2 707 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ)
18 peano2re 10247 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
19 lttr 10152 . . . . . . . . 9 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2012, 19mp3an3 1453 . . . . . . . 8 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2117, 18, 20syl2anc 694 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2215, 21mpand 711 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1))
2322con3d 148 . . . . 5 (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1))
24 lenlt 10154 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
2512, 17, 24sylancr 696 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
26 lenlt 10154 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2712, 18, 26sylancr 696 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2823, 25, 273imtr4d 283 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1)))
299, 28sylbird 250 . . 3 (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
306, 29syl 17 . 2 (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
311, 2, 3, 4, 5, 30nnind 11076 1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cn 11058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059
This theorem is referenced by:  nngt1ne1  11085  nnle1eq1  11086  nngt0  11087  nnnlt1  11088  nnrecgt0  11096  nnge1d  11101  elnnnn0c  11376  elnnz1  11441  zltp1le  11465  nn0ledivnn  11979  fzo1fzo0n0  12558  elfzom1elp1fzo  12574  fzo0sn0fzo1  12597  addmodlteq  12785  nnlesq  13008  digit1  13038  faclbnd  13117  faclbnd3  13119  faclbnd4lem1  13120  faclbnd4lem4  13123  len0nnbi  13373  fstwrdne0  13378  swrdtrcfv  13487  swrdccatwrd  13514  divalglem1  15164  coprmgcdb  15409  isprm3  15443  pockthg  15657  infpn2  15664  setsstruct  15945  chfacfpmmulgsum2  20718  dscmet  22424  ovolunlem1a  23310  vitali  23427  plyeq0lem  24011  logtayllem  24450  leibpi  24714  vmalelog  24975  chtublem  24981  logfaclbnd  24992  bposlem1  25054  gausslemma2dlem1a  25135  dchrisum0lem1  25250  logdivbnd  25290  pntlemn  25334  ostth2lem3  25369  clwwisshclwwslem  26971  clwlksfclwwlk  27049  nnmulge  29643  lmatfvlem  30009  eulerpartlems  30550  eulerpartlemb  30558  ballotlem2  30678  reprlt  30825  fz0n  31742  nndivlub  32582  knoppndvlem1  32628  knoppndvlem2  32629  knoppndvlem7  32634  knoppndvlem11  32638  knoppndvlem14  32641  fzsplit1nn0  37634  pell1qrgaplem  37754  pellqrex  37760  monotoddzzfi  37824  jm2.23  37880  sumnnodd  40180  dvnmul  40476  wallispilem4  40603  wallispilem5  40604  wallispi  40605  wallispi2lem1  40606  stirlinglem5  40613  stirlinglem13  40621  dirkertrigeqlem1  40633  fouriersw  40766  etransclem24  40793  iccpartigtl  41684  fmtnodvds  41781  lighneallem2  41848  logbpw2m1  42686  blennnelnn  42695  blenpw2m1  42698  dignnld  42722
  Copyright terms: Public domain W3C validator