MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaleph Structured version   Visualization version   GIF version

Theorem gchaleph 10093
Description: If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchaleph ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))

Proof of Theorem gchaleph
StepHypRef Expression
1 alephsucpw2 9537 . . 3 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
2 alephon 9495 . . . . 5 (ℵ‘suc 𝐴) ∈ On
3 onenon 9378 . . . . 5 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
42, 3ax-mp 5 . . . 4 (ℵ‘suc 𝐴) ∈ dom card
5 simp3 1134 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ∈ dom card)
6 domtri2 9418 . . . 4 (((ℵ‘suc 𝐴) ∈ dom card ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
74, 5, 6sylancr 589 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
81, 7mpbiri 260 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴))
9 fvex 6683 . . . . . . 7 (ℵ‘𝐴) ∈ V
10 simp1 1132 . . . . . . . 8 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝐴 ∈ On)
11 alephgeom 9508 . . . . . . . 8 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1210, 11sylib 220 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ⊆ (ℵ‘𝐴))
13 ssdomg 8555 . . . . . . 7 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
149, 12, 13mpsyl 68 . . . . . 6 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ω ≼ (ℵ‘𝐴))
15 domnsym 8643 . . . . . 6 (ω ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ ω)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ≺ ω)
17 isfinite 9115 . . . . 5 ((ℵ‘𝐴) ∈ Fin ↔ (ℵ‘𝐴) ≺ ω)
1816, 17sylnibr 331 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘𝐴) ∈ Fin)
19 simp2 1133 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ∈ GCH)
20 alephordilem1 9499 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
21203ad2ant1 1129 . . . . 5 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
22 gchi 10046 . . . . . 6 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) ∧ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)) → (ℵ‘𝐴) ∈ Fin)
23223expia 1117 . . . . 5 (((ℵ‘𝐴) ∈ GCH ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2419, 21, 23syl2anc 586 . . . 4 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ((ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ Fin))
2518, 24mtod 200 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴))
26 domtri2 9418 . . . 4 ((𝒫 (ℵ‘𝐴) ∈ dom card ∧ (ℵ‘suc 𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
275, 4, 26sylancl 588 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴) ↔ ¬ (ℵ‘suc 𝐴) ≺ 𝒫 (ℵ‘𝐴)))
2825, 27mpbird 259 . 2 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴))
29 sbth 8637 . 2 (((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≼ (ℵ‘suc 𝐴)) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
308, 28, 29syl2anc 586 1 ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  w3a 1083  wcel 2114  Vcvv 3494  wss 3936  𝒫 cpw 4539   class class class wbr 5066  dom cdm 5555  Oncon0 6191  suc csuc 6193  cfv 6355  ωcom 7580  cen 8506  cdom 8507  csdm 8508  Fincfn 8509  cardccrd 9364  cale 9365  GCHcgch 10042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-card 9368  df-aleph 9369  df-gch 10043
This theorem is referenced by:  gchaleph2  10094
  Copyright terms: Public domain W3C validator