MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmid Structured version   Visualization version   GIF version

Theorem ghmid 17660
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y 𝑌 = (0g𝑆)
ghmid.z 0 = (0g𝑇)
Assertion
Ref Expression
ghmid (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 17656 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 eqid 2621 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
3 ghmid.y . . . . . . 7 𝑌 = (0g𝑆)
42, 3grpidcl 17444 . . . . . 6 (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆))
51, 4syl 17 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆))
6 eqid 2621 . . . . . 6 (+g𝑆) = (+g𝑆)
7 eqid 2621 . . . . . 6 (+g𝑇) = (+g𝑇)
82, 6, 7ghmlin 17659 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
95, 5, 8mpd3an23 1425 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
102, 6, 3grplid 17446 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g𝑆)𝑌) = 𝑌)
111, 5, 10syl2anc 693 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g𝑆)𝑌) = 𝑌)
1211fveq2d 6193 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = (𝐹𝑌))
139, 12eqtr3d 2657 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌))
14 ghmgrp2 17657 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
15 eqid 2621 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
162, 15ghmf 17658 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1716, 5ffvelrnd 6358 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) ∈ (Base‘𝑇))
18 ghmid.z . . . . 5 0 = (0g𝑇)
1915, 7, 18grpid 17451 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑌) ∈ (Base‘𝑇)) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2014, 17, 19syl2anc 693 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2113, 20mpbid 222 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹𝑌))
2221eqcomd 2627 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1482  wcel 1989  cfv 5886  (class class class)co 6647  Basecbs 15851  +gcplusg 15935  0gc0g 16094  Grpcgrp 17416   GrpHom cghm 17651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-ghm 17652
This theorem is referenced by:  ghminv  17661  ghmmhm  17664  ghmpreima  17676  ghmf1  17683  lactghmga  17818  f1rhm0to0  18734  f1rhm0to0ALT  18735  kerf1hrm  18737  srng0  18854  islmhm2  19032  evlslem2  19506  evlslem6  19507  evlslem3  19508  zrh0  19856  chrrhm  19873  zndvds0  19893  ip0l  19975  0mat2pmat  20535  nmolb2d  22516  nmoi  22526  nmoix  22527  nmoleub  22529  nmoleub2lem2  22910  nmhmcn  22914  dchrptlem2  24984  psgnid  29832  nrhmzr  41644  zrinitorngc  41771
  Copyright terms: Public domain W3C validator