MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Visualization version   GIF version

Theorem nmoleub2lem2 22856
Description: Lemma for nmoleub2a 22857 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem2.6 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
nmoleub2lem2.7 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
Assertion
Ref Expression
nmoleub2lem2 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)   𝑂(𝑥)

Proof of Theorem nmoleub2lem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 lmghm 18971 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
13 eqid 2621 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
14 eqid 2621 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 17606 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
169, 12, 153syl 18 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝑆)) = (0g𝑇))
1716fveq2d 6162 . . . . . . 7 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
18 inss1 3817 . . . . . . . . 9 (NrmMod ∩ ℂMod) ⊆ NrmMod
1918, 8sseldi 3586 . . . . . . . 8 (𝜑𝑇 ∈ NrmMod)
20 nlmngp 22421 . . . . . . . 8 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
214, 14nm0 22373 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2219, 20, 213syl 18 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2317, 22eqtrd 2655 . . . . . 6 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2423adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2524oveq1d 6630 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = (0 / 𝑅))
2611adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℝ+)
2726rpcnd 11834 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ)
2826rpne0d 11837 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0)
2927, 28div0d 10760 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0)
3025, 29eqtrd 2655 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = 0)
3118, 7sseldi 3586 . . . . . . 7 (𝜑𝑆 ∈ NrmMod)
32 nlmngp 22421 . . . . . . 7 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
3331, 32syl 17 . . . . . 6 (𝜑𝑆 ∈ NrmGrp)
34 ngpgrp 22343 . . . . . 6 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
352, 13grpidcl 17390 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
3633, 34, 353syl 18 . . . . 5 (𝜑 → (0g𝑆) ∈ 𝑉)
3736adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0g𝑆) ∈ 𝑉)
382, 3nmcl 22360 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
3933, 38sylan 488 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4011adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
4140rpred 11832 . . . . . . . 8 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
42 nmoleub2lem2.7 . . . . . . . 8 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4339, 41, 42syl2anc 692 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4443imim1d 82 . . . . . 6 ((𝜑𝑥𝑉) → (((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
4544ralimdva 2958 . . . . 5 (𝜑 → (∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
4645imp 445 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
473, 13nm0 22373 . . . . . . 7 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
4831, 32, 473syl 18 . . . . . 6 (𝜑 → (𝐿‘(0g𝑆)) = 0)
4948adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) = 0)
5026rpgt0d 11835 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅)
5149, 50eqbrtrd 4645 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) < 𝑅)
52 fveq2 6158 . . . . . . 7 (𝑥 = (0g𝑆) → (𝐿𝑥) = (𝐿‘(0g𝑆)))
5352breq1d 4633 . . . . . 6 (𝑥 = (0g𝑆) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(0g𝑆)) < 𝑅))
54 fveq2 6158 . . . . . . . . 9 (𝑥 = (0g𝑆) → (𝐹𝑥) = (𝐹‘(0g𝑆)))
5554fveq2d 6162 . . . . . . . 8 (𝑥 = (0g𝑆) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(0g𝑆))))
5655oveq1d 6630 . . . . . . 7 (𝑥 = (0g𝑆) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅))
5756breq1d 4633 . . . . . 6 (𝑥 = (0g𝑆) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
5853, 57imbi12d 334 . . . . 5 (𝑥 = (0g𝑆) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
5958rspcv 3295 . . . 4 ((0g𝑆) ∈ 𝑉 → (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
6037, 46, 51, 59syl3c 66 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)
6130, 60eqbrtrrd 4647 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
62 simp-4l 805 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝜑)
6362, 7syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑆 ∈ (NrmMod ∩ ℂMod))
6462, 8syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑇 ∈ (NrmMod ∩ ℂMod))
6562, 9syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
6662, 10syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ*)
6762, 11syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑅 ∈ ℝ+)
68 nmoleub2a.5 . . . . 5 (𝜑 → ℚ ⊆ 𝐾)
6962, 68syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ℚ ⊆ 𝐾)
70 eqid 2621 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
71 simpllr 798 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ)
7261ad3antrrr 765 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 0 ≤ 𝐴)
73 simplrl 799 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦𝑉)
74 simplrr 800 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦 ≠ (0g𝑆))
7546ad3antrrr 765 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
76 fveq2 6158 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘(𝑧( ·𝑠𝑆)𝑦)))
7776breq1d 4633 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅))
78 fveq2 6158 . . . . . . . . . 10 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐹𝑥) = (𝐹‘(𝑧( ·𝑠𝑆)𝑦)))
7978fveq2d 6162 . . . . . . . . 9 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))))
8079oveq1d 6630 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅))
8180breq1d 4633 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
8277, 81imbi12d 334 . . . . . 6 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8382rspccv 3296 . . . . 5 (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8475, 83syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
85 simpr 477 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
861, 2, 3, 4, 5, 6, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 84, 85nmoleub2lem3 22855 . . 3 ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
87 iman 440 . . 3 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
8886, 87mpbir 221 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
89 nmoleub2lem2.6 . . 3 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
9039, 41, 89syl2anc 692 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
911, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 61, 88, 90nmoleub2lem 22854 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  cin 3559  wss 3560   class class class wbr 4623  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896   · cmul 9901  *cxr 10033   < clt 10034  cle 10035   / cdiv 10644  cq 11748  +crp 11792  Basecbs 15800  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040  Grpcgrp 17362   GrpHom cghm 17597   LMHom clmhm 18959  normcnm 22321  NrmGrpcngp 22322  NrmModcnlm 22325   normOp cnmo 22449  ℂModcclm 22802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ico 12139  df-fz 12285  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-topgen 16044  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-subg 17531  df-ghm 17598  df-cmn 18135  df-mgp 18430  df-ring 18489  df-cring 18490  df-subrg 18718  df-lmod 18805  df-lmhm 18962  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-xms 22065  df-ms 22066  df-nm 22327  df-ngp 22328  df-nlm 22331  df-nmo 22452  df-nghm 22453  df-clm 22803
This theorem is referenced by:  nmoleub2a  22857  nmoleub2b  22858
  Copyright terms: Public domain W3C validator