MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem2 Structured version   Visualization version   GIF version

Theorem evlslem2 21986
Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem2.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem2.b 𝐵 = (Base‘𝑃)
evlslem2.m · = (.r𝑆)
evlslem2.z 0 = (0g𝑅)
evlslem2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem2.i (𝜑𝐼𝑊)
evlslem2.r (𝜑𝑅 ∈ CRing)
evlslem2.s (𝜑𝑆 ∈ CRing)
evlslem2.e1 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
evlslem2.e2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
Assertion
Ref Expression
evlslem2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Distinct variable groups:   𝜑,𝑖,𝑗,𝑘,𝑦   𝐵,𝑖,𝑗,𝑘,𝑥,𝑦   𝐷,𝑖,𝑗,𝑘,𝑥,𝑦   𝑖,𝐸,𝑗   ,𝐼,𝑖,𝑗,𝑘   · ,𝑖,𝑗   𝑃,𝑖,𝑗,𝑘,𝑥,𝑦   𝑅,,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗   𝑖,𝑊,𝑗,𝑘   0 ,,𝑖,𝑗,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,)   𝐵()   𝐷()   𝑃()   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑘)   · (𝑥,𝑦,,𝑘)   𝐸(𝑥,𝑦,,𝑘)   𝐼(𝑥,𝑦)   𝑊(𝑥,𝑦,)

Proof of Theorem evlslem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 evlslem2.b . . . . 5 𝐵 = (Base‘𝑃)
2 eqid 2729 . . . . 5 (.r𝑃) = (.r𝑃)
3 eqid 2729 . . . . 5 (0g𝑃) = (0g𝑃)
4 evlslem2.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
5 ovex 7420 . . . . . . 7 (ℕ0m 𝐼) ∈ V
64, 5rabex2 5296 . . . . . 6 𝐷 ∈ V
76a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
8 evlslem2.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
9 evlslem2.i . . . . . . 7 (𝜑𝐼𝑊)
10 evlslem2.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
11 crngring 20154 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
138, 9, 12mplringd 21932 . . . . . 6 (𝜑𝑃 ∈ Ring)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
15 evlslem2.z . . . . . 6 0 = (0g𝑅)
16 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
179ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐼𝑊)
1812ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑅 ∈ Ring)
19 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
208, 16, 1, 4, 19mplelf 21907 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
2120ffvelcdmda 7056 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑥𝑗) ∈ (Base‘𝑅))
22 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑗𝐷)
238, 4, 15, 16, 17, 18, 1, 21, 22mplmon2cl 21975 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
249ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐼𝑊)
2512ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑅 ∈ Ring)
26 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
278, 16, 1, 4, 26mplelf 21907 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
2827ffvelcdmda 7056 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑦𝑖) ∈ (Base‘𝑅))
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑖𝐷)
308, 4, 15, 16, 24, 25, 1, 28, 29mplmon2cl 21975 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
316mptex 7197 . . . . . . . . . . . 12 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V
32 funmpt 6554 . . . . . . . . . . . 12 Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
33 fvex 6871 . . . . . . . . . . . 12 (0g𝑃) ∈ V
3431, 32, 333pm3.2i 1340 . . . . . . . . . . 11 ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V)
3534a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V))
36 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦𝐵)
378, 1, 15, 36mplelsfi 21904 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → 𝑦 finSupp 0 )
3837fsuppimpd 9320 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
398, 16, 1, 4, 36mplelf 21907 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝑦:𝐷⟶(Base‘𝑅))
40 ssidd 3970 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
416a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
4215fvexi 6872 . . . . . . . . . . . . . . . . 17 0 ∈ V
4342a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 0 ∈ V)
4439, 40, 41, 43suppssr 8174 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦𝑗) = 0 )
4544ifeq1d 4508 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 ))
46 ifid 4529 . . . . . . . . . . . . . 14 if(𝑘 = 𝑗, 0 , 0 ) = 0
4745, 46eqtrdi 2780 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = 0 )
4847mpteq2dv 5201 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷0 ))
49 ringgrp 20147 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5012, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Grp)
518, 4, 15, 3, 9, 50mpl0 21915 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
52 fconstmpt 5700 . . . . . . . . . . . . . 14 (𝐷 × { 0 }) = (𝑘𝐷0 )
5351, 52eqtrdi 2780 . . . . . . . . . . . . 13 (𝜑 → (0g𝑃) = (𝑘𝐷0 ))
5453ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (0g𝑃) = (𝑘𝐷0 ))
5548, 54eqtr4d 2767 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (0g𝑃))
5655, 41suppss2 8179 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))
57 suppssfifsupp 9331 . . . . . . . . . 10 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V) ∧ ((𝑦 supp 0 ) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
5835, 38, 56, 57syl12anc 836 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
5958ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
60 fveq1 6857 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑗) = (𝑥𝑗))
6160ifeq1d 4508 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥𝑗), 0 ))
6261mpteq2dv 5201 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))
6362mpteq2dv 5201 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
6463breq1d 5117 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃)))
6564cbvralvw 3215 . . . . . . . 8 (∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6659, 65sylib 218 . . . . . . 7 (𝜑 → ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6766r19.21bi 3229 . . . . . 6 ((𝜑𝑥𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6867adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
69 equequ2 2026 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑘 = 𝑖𝑘 = 𝑗))
70 fveq2 6858 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑦𝑖) = (𝑦𝑗))
7169, 70ifbieq1d 4513 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦𝑗), 0 ))
7271mpteq2dv 5201 . . . . . . 7 (𝑖 = 𝑗 → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7372cbvmptv 5211 . . . . . 6 (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7458adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
7573, 74eqbrtrid 5142 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) finSupp (0g𝑃))
761, 2, 3, 7, 7, 14, 23, 30, 68, 75gsumdixp 20228 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
7776fveq2d 6862 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
78 ringcmn 20191 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
7913, 78syl 17 . . . . 5 (𝜑𝑃 ∈ CMnd)
8079adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ CMnd)
81 evlslem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
82 crngring 20154 . . . . . . 7 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
8381, 82syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
8483adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Ring)
85 ringmnd 20152 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
8684, 85syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
876, 6xpex 7729 . . . . 5 (𝐷 × 𝐷) ∈ V
8887a1i 11 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 × 𝐷) ∈ V)
89 evlslem2.e1 . . . . . 6 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
90 ghmmhm 19158 . . . . . 6 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9189, 90syl 17 . . . . 5 (𝜑𝐸 ∈ (𝑃 MndHom 𝑆))
9291adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9313ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑃 ∈ Ring)
9423adantrr 717 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
9530adantrl 716 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
961, 2ringcl 20159 . . . . . . 7 ((𝑃 ∈ Ring ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵 ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
9793, 94, 95, 96syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
9897ralrimivva 3180 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
99 eqid 2729 . . . . . 6 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
10099fmpo 8047 . . . . 5 (∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
10198, 100sylib 218 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
1026, 6mpoex 8058 . . . . . . 7 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
10399mpofun 7513 . . . . . . 7 Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
104102, 103, 333pm3.2i 1340 . . . . . 6 ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V)
105104a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V))
10668fsuppimpd 9320 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin)
10775fsuppimpd 9320 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin)
108 xpfi 9269 . . . . . 6 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
109106, 107, 108syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
1101, 3, 2, 14, 23, 30, 7, 7evlslem4 21983 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))
111 suppssfifsupp 9331 . . . . 5 ((((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin ∧ ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
112105, 109, 110, 111syl12anc 836 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
1131, 3, 80, 86, 88, 92, 101, 112gsummhm 19868 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1149ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝐼𝑊)
11510ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑅 ∈ CRing)
116 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
117 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑗𝐷)
118 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑖𝐷)
11921adantrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑥𝑗) ∈ (Base‘𝑅))
12028adantrl 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑦𝑖) ∈ (Base‘𝑅))
1218, 4, 15, 16, 114, 115, 2, 116, 117, 118, 119, 120mplmon2mul 21976 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 )))
122121fveq2d 6862 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))))
123 evlslem2.e2 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
124123anassrs 467 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
125122, 124eqtrd 2764 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
1261253impb 1114 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷𝑖𝐷) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
127126mpoeq3dva 7466 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
128127oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
129 eqidd 2730 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
130 eqid 2729 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
1311, 130ghmf 19152 . . . . . . . . 9 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆))
13289, 131syl 17 . . . . . . . 8 (𝜑𝐸:𝐵⟶(Base‘𝑆))
133132feqmptd 6929 . . . . . . 7 (𝜑𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
134133adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
135 fveq2 6858 . . . . . 6 (𝑧 = ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) → (𝐸𝑧) = (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
13697, 129, 134, 135fmpoco 8074 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
137136oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
138 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
139 fveq2 6858 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
14023, 138, 134, 139fmptco 7101 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) = (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
141140oveq2d 7403 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
142 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
143 fveq2 6858 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
14430, 142, 134, 143fmptco 7101 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
145144oveq2d 7403 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
146141, 145oveq12d 7405 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
147 evlslem2.m . . . . . 6 · = (.r𝑆)
148 eqid 2729 . . . . . 6 (0g𝑆) = (0g𝑆)
149132ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
150149, 23ffvelcdmd 7057 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) ∈ (Base‘𝑆))
151132ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
152151, 30ffvelcdmd 7057 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ (Base‘𝑆))
1536mptex 7197 . . . . . . . . 9 (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V
154 funmpt 6554 . . . . . . . . 9 Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
155 fvex 6871 . . . . . . . . 9 (0g𝑆) ∈ V
156153, 154, 1553pm3.2i 1340 . . . . . . . 8 ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V)
157156a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V))
158 ssidd 3970 . . . . . . . . 9 (𝜑 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
1593, 148ghmid 19154 . . . . . . . . . 10 (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g𝑃)) = (0g𝑆))
16089, 159syl 17 . . . . . . . . 9 (𝜑 → (𝐸‘(0g𝑃)) = (0g𝑆))
1616mptex 7197 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V
162161a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V)
16333a1i 11 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ V)
164158, 160, 162, 163suppssfv 8181 . . . . . . . 8 (𝜑 → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
165164adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
166 suppssfifsupp 9331 . . . . . . 7 ((((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
167157, 106, 165, 166syl12anc 836 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
1686mptex 7197 . . . . . . . . 9 (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
169 funmpt 6554 . . . . . . . . 9 Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
170168, 169, 1553pm3.2i 1340 . . . . . . . 8 ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V)
171170a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V))
172 ssidd 3970 . . . . . . . . 9 (𝜑 → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
1736mptex 7197 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V
174173a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V)
175172, 160, 174, 163suppssfv 8181 . . . . . . . 8 (𝜑 → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
176175adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
177 suppssfifsupp 9331 . . . . . . 7 ((((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
178171, 107, 176, 177syl12anc 836 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
179130, 147, 148, 7, 7, 84, 150, 152, 167, 178gsumdixp 20228 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
180146, 179eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
181128, 137, 1803eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
18277, 113, 1813eqtr2d 2770 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1839adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑊)
18412adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
1858, 4, 15, 1, 183, 184, 19mplcoe4 21978 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
1868, 4, 15, 1, 183, 184, 26mplcoe4 21978 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
187185, 186oveq12d 7405 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) = ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
188187fveq2d 6862 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
189185fveq2d 6862 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
19023fmpttd 7087 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))):𝐷𝐵)
1911, 3, 80, 86, 7, 92, 190, 68gsummhm 19868 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
192189, 191eqtr4d 2767 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
193186fveq2d 6862 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
19430fmpttd 7087 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))):𝐷𝐵)
1951, 3, 80, 86, 7, 92, 194, 75gsummhm 19868 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
196193, 195eqtr4d 2767 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
197192, 196oveq12d 7405 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥) · (𝐸𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
198182, 188, 1973eqtr4d 2774 1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  ccom 5642  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312   + caddc 11071  cn 12186  0cn0 12442  Basecbs 17179  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708  Grpcgrp 18865   GrpHom cghm 19144  CMndccmn 19710  Ringcrg 20142  CRingccrg 20143   mPoly cmpl 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-assa 21762  df-psr 21818  df-mpl 21820
This theorem is referenced by:  evlslem1  21989
  Copyright terms: Public domain W3C validator