MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem2 Structured version   Visualization version   GIF version

Theorem evlslem2 20292
Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlslem2.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem2.b 𝐵 = (Base‘𝑃)
evlslem2.m · = (.r𝑆)
evlslem2.z 0 = (0g𝑅)
evlslem2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem2.i (𝜑𝐼 ∈ V)
evlslem2.r (𝜑𝑅 ∈ CRing)
evlslem2.s (𝜑𝑆 ∈ CRing)
evlslem2.e1 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
evlslem2.e2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
Assertion
Ref Expression
evlslem2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Distinct variable groups:   𝜑,𝑖,𝑗,𝑘,𝑦   𝐵,𝑖,𝑗,𝑘,𝑥,𝑦   𝐷,𝑖,𝑗,𝑘,𝑥,𝑦   𝑖,𝐸,𝑗   ,𝐼,𝑖,𝑗,𝑘   · ,𝑖,𝑗   𝑃,𝑖,𝑗,𝑘,𝑥,𝑦   𝑅,,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗   0 ,,𝑖,𝑗,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,)   𝐵()   𝐷()   𝑃()   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑘)   · (𝑥,𝑦,,𝑘)   𝐸(𝑥,𝑦,,𝑘)   𝐼(𝑥,𝑦)

Proof of Theorem evlslem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 evlslem2.b . . . . 5 𝐵 = (Base‘𝑃)
2 eqid 2821 . . . . 5 (.r𝑃) = (.r𝑃)
3 eqid 2821 . . . . 5 (0g𝑃) = (0g𝑃)
4 evlslem2.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
5 ovex 7189 . . . . . . 7 (ℕ0m 𝐼) ∈ V
64, 5rabex2 5237 . . . . . 6 𝐷 ∈ V
76a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
8 evlslem2.i . . . . . . 7 (𝜑𝐼 ∈ V)
9 evlslem2.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
10 crngring 19308 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
12 evlslem2.p . . . . . . . 8 𝑃 = (𝐼 mPoly 𝑅)
1312mplring 20232 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
148, 11, 13syl2anc 586 . . . . . 6 (𝜑𝑃 ∈ Ring)
1514adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
16 evlslem2.z . . . . . 6 0 = (0g𝑅)
17 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
188ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐼 ∈ V)
1911ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑅 ∈ Ring)
20 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
2112, 17, 1, 4, 20mplelf 20213 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
2221ffvelrnda 6851 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑥𝑗) ∈ (Base‘𝑅))
23 simpr 487 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑗𝐷)
2412, 4, 16, 17, 18, 19, 1, 22, 23mplmon2cl 20280 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
258ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐼 ∈ V)
2611ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑅 ∈ Ring)
27 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2812, 17, 1, 4, 27mplelf 20213 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
2928ffvelrnda 6851 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑦𝑖) ∈ (Base‘𝑅))
30 simpr 487 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑖𝐷)
3112, 4, 16, 17, 25, 26, 1, 29, 30mplmon2cl 20280 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
326mptex 6986 . . . . . . . . . . . 12 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V
33 funmpt 6393 . . . . . . . . . . . 12 Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
34 fvex 6683 . . . . . . . . . . . 12 (0g𝑃) ∈ V
3532, 33, 343pm3.2i 1335 . . . . . . . . . . 11 ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V))
37 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦𝐵)
389adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑅 ∈ CRing)
3912, 1, 16, 37, 38mplelsfi 20271 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → 𝑦 finSupp 0 )
4039fsuppimpd 8840 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
4112, 17, 1, 4, 37mplelf 20213 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝑦:𝐷⟶(Base‘𝑅))
42 ssidd 3990 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
436a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
4416fvexi 6684 . . . . . . . . . . . . . . . . 17 0 ∈ V
4544a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 0 ∈ V)
4641, 42, 43, 45suppssr 7861 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦𝑗) = 0 )
4746ifeq1d 4485 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 ))
48 ifid 4506 . . . . . . . . . . . . . 14 if(𝑘 = 𝑗, 0 , 0 ) = 0
4947, 48syl6eq 2872 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = 0 )
5049mpteq2dv 5162 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷0 ))
51 ringgrp 19302 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5211, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Grp)
5312, 4, 16, 3, 8, 52mpl0 20221 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
54 fconstmpt 5614 . . . . . . . . . . . . . 14 (𝐷 × { 0 }) = (𝑘𝐷0 )
5553, 54syl6eq 2872 . . . . . . . . . . . . 13 (𝜑 → (0g𝑃) = (𝑘𝐷0 ))
5655ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (0g𝑃) = (𝑘𝐷0 ))
5750, 56eqtr4d 2859 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (0g𝑃))
5857, 43suppss2 7864 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))
59 suppssfifsupp 8848 . . . . . . . . . 10 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V) ∧ ((𝑦 supp 0 ) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
6036, 40, 58, 59syl12anc 834 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
6160ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
62 fveq1 6669 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑗) = (𝑥𝑗))
6362ifeq1d 4485 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥𝑗), 0 ))
6463mpteq2dv 5162 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))
6564mpteq2dv 5162 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
6665breq1d 5076 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃)))
6766cbvralvw 3449 . . . . . . . 8 (∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6861, 67sylib 220 . . . . . . 7 (𝜑 → ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6968r19.21bi 3208 . . . . . 6 ((𝜑𝑥𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
7069adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
71 equequ2 2033 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑘 = 𝑖𝑘 = 𝑗))
72 fveq2 6670 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑦𝑖) = (𝑦𝑗))
7371, 72ifbieq1d 4490 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦𝑗), 0 ))
7473mpteq2dv 5162 . . . . . . 7 (𝑖 = 𝑗 → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7574cbvmptv 5169 . . . . . 6 (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7660adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
7775, 76eqbrtrid 5101 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) finSupp (0g𝑃))
781, 2, 3, 7, 7, 15, 24, 31, 70, 77gsumdixp 19359 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
7978fveq2d 6674 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
80 ringcmn 19331 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8114, 80syl 17 . . . . 5 (𝜑𝑃 ∈ CMnd)
8281adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ CMnd)
83 evlslem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
84 crngring 19308 . . . . . . 7 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
8583, 84syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
8685adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Ring)
87 ringmnd 19306 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
8886, 87syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
896, 6xpex 7476 . . . . 5 (𝐷 × 𝐷) ∈ V
9089a1i 11 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 × 𝐷) ∈ V)
91 evlslem2.e1 . . . . . 6 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
92 ghmmhm 18368 . . . . . 6 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9391, 92syl 17 . . . . 5 (𝜑𝐸 ∈ (𝑃 MndHom 𝑆))
9493adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9514ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑃 ∈ Ring)
9624adantrr 715 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
9731adantrl 714 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
981, 2ringcl 19311 . . . . . . 7 ((𝑃 ∈ Ring ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵 ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
9995, 96, 97, 98syl3anc 1367 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
10099ralrimivva 3191 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
101 eqid 2821 . . . . . 6 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
102101fmpo 7766 . . . . 5 (∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
103100, 102sylib 220 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
1046, 6mpoex 7777 . . . . . . 7 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
105101mpofun 7276 . . . . . . 7 Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
106104, 105, 343pm3.2i 1335 . . . . . 6 ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V)
107106a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V))
10870fsuppimpd 8840 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin)
10977fsuppimpd 8840 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin)
110 xpfi 8789 . . . . . 6 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
111108, 109, 110syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
1121, 3, 2, 15, 24, 31, 7, 7evlslem4 20288 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))
113 suppssfifsupp 8848 . . . . 5 ((((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin ∧ ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
114107, 111, 112, 113syl12anc 834 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
1151, 3, 82, 88, 90, 94, 103, 114gsummhm 19058 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1168ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝐼 ∈ V)
1179ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑅 ∈ CRing)
118 eqid 2821 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
119 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑗𝐷)
120 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑖𝐷)
12122adantrr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑥𝑗) ∈ (Base‘𝑅))
12229adantrl 714 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑦𝑖) ∈ (Base‘𝑅))
12312, 4, 16, 17, 116, 117, 2, 118, 119, 120, 121, 122mplmon2mul 20281 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 )))
124123fveq2d 6674 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))))
125 evlslem2.e2 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
126125anassrs 470 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
127124, 126eqtrd 2856 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
1281273impb 1111 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷𝑖𝐷) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
129128mpoeq3dva 7231 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
130129oveq2d 7172 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
131 eqidd 2822 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
132 eqid 2821 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
1331, 132ghmf 18362 . . . . . . . . 9 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆))
13491, 133syl 17 . . . . . . . 8 (𝜑𝐸:𝐵⟶(Base‘𝑆))
135134feqmptd 6733 . . . . . . 7 (𝜑𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
136135adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
137 fveq2 6670 . . . . . 6 (𝑧 = ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) → (𝐸𝑧) = (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
13899, 131, 136, 137fmpoco 7790 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
139138oveq2d 7172 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
140 eqidd 2822 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
141 fveq2 6670 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
14224, 140, 136, 141fmptco 6891 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) = (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
143142oveq2d 7172 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
144 eqidd 2822 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
145 fveq2 6670 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
14631, 144, 136, 145fmptco 6891 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
147146oveq2d 7172 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
148143, 147oveq12d 7174 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
149 evlslem2.m . . . . . 6 · = (.r𝑆)
150 eqid 2821 . . . . . 6 (0g𝑆) = (0g𝑆)
151134ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
152151, 24ffvelrnd 6852 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) ∈ (Base‘𝑆))
153134ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
154153, 31ffvelrnd 6852 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ (Base‘𝑆))
1556mptex 6986 . . . . . . . . 9 (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V
156 funmpt 6393 . . . . . . . . 9 Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
157 fvex 6683 . . . . . . . . 9 (0g𝑆) ∈ V
158155, 156, 1573pm3.2i 1335 . . . . . . . 8 ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V)
159158a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V))
160 ssidd 3990 . . . . . . . . 9 (𝜑 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
1613, 150ghmid 18364 . . . . . . . . . 10 (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g𝑃)) = (0g𝑆))
16291, 161syl 17 . . . . . . . . 9 (𝜑 → (𝐸‘(0g𝑃)) = (0g𝑆))
1636mptex 6986 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V
164163a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V)
16534a1i 11 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ V)
166160, 162, 164, 165suppssfv 7866 . . . . . . . 8 (𝜑 → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
167166adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
168 suppssfifsupp 8848 . . . . . . 7 ((((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
169159, 108, 167, 168syl12anc 834 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
1706mptex 6986 . . . . . . . . 9 (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
171 funmpt 6393 . . . . . . . . 9 Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
172170, 171, 1573pm3.2i 1335 . . . . . . . 8 ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V)
173172a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V))
174 ssidd 3990 . . . . . . . . 9 (𝜑 → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
1756mptex 6986 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V
176175a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V)
177174, 162, 176, 165suppssfv 7866 . . . . . . . 8 (𝜑 → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
178177adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
179 suppssfifsupp 8848 . . . . . . 7 ((((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
180173, 109, 178, 179syl12anc 834 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
181132, 149, 150, 7, 7, 86, 152, 154, 169, 180gsumdixp 19359 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
182148, 181eqtrd 2856 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
183130, 139, 1823eqtr4d 2866 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
18479, 115, 1833eqtr2d 2862 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1858adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ V)
18611adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
18712, 4, 16, 1, 185, 186, 20mplcoe4 20283 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
18812, 4, 16, 1, 185, 186, 27mplcoe4 20283 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
189187, 188oveq12d 7174 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) = ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
190189fveq2d 6674 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
191187fveq2d 6674 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
19224fmpttd 6879 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))):𝐷𝐵)
1931, 3, 82, 88, 7, 94, 192, 70gsummhm 19058 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
194191, 193eqtr4d 2859 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
195188fveq2d 6674 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
19631fmpttd 6879 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))):𝐷𝐵)
1971, 3, 82, 88, 7, 94, 196, 77gsummhm 19058 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
198195, 197eqtr4d 2859 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
199194, 198oveq12d 7174 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥) · (𝐸𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
200184, 190, 1993eqtr4d 2866 1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  wss 3936  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  cima 5558  ccom 5559  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  f cof 7407   supp csupp 7830  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833   + caddc 10540  cn 11638  0cn0 11898  Basecbs 16483  .rcmulr 16566  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911   MndHom cmhm 17954  Grpcgrp 18103   GrpHom cghm 18355  CMndccmn 18906  Ringcrg 19297  CRingccrg 19298   mPoly cmpl 20133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-lmod 19636  df-lss 19704  df-assa 20085  df-psr 20136  df-mpl 20138
This theorem is referenced by:  evlslem1  20295
  Copyright terms: Public domain W3C validator