Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres Structured version   Visualization version   GIF version

Theorem gsummptres 29593
 Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
gsummptres.0 𝐵 = (Base‘𝐺)
gsummptres.1 0 = (0g𝐺)
gsummptres.2 (𝜑𝐺 ∈ CMnd)
gsummptres.3 (𝜑𝐴 ∈ Fin)
gsummptres.4 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptres.5 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
Assertion
Ref Expression
gsummptres (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   0 (𝑥)

Proof of Theorem gsummptres
StepHypRef Expression
1 gsummptres.0 . . 3 𝐵 = (Base‘𝐺)
2 gsummptres.1 . . 3 0 = (0g𝐺)
3 eqid 2621 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres.2 . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres.3 . . 3 (𝜑𝐴 ∈ Fin)
6 gsummptres.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 eqid 2621 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
8 fvex 6163 . . . . . 6 (0g𝐺) ∈ V
92, 8eqeltri 2694 . . . . 5 0 ∈ V
109a1i 11 . . . 4 (𝜑0 ∈ V)
117, 5, 6, 10fsuppmptdm 8238 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
12 inindif 29224 . . . 4 ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅
1312a1i 11 . . 3 (𝜑 → ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅)
14 inundif 4023 . . . . 5 ((𝐴𝐷) ∪ (𝐴𝐷)) = 𝐴
1514eqcomi 2630 . . . 4 𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷))
1615a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷)))
171, 2, 3, 4, 5, 6, 11, 13, 16gsumsplit2 18261 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))))
18 gsummptres.5 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
1918mpteq2dva 4709 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐷) ↦ 0 ))
2019oveq2d 6626 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )))
21 cmnmnd 18140 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
224, 21syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
23 diffi 8144 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
245, 23syl 17 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ Fin)
252gsumz 17306 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2622, 24, 25syl2anc 692 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2720, 26eqtrd 2655 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = 0 )
2827oveq2d 6626 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ))
29 infi 8136 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
305, 29syl 17 . . . . 5 (𝜑 → (𝐴𝐷) ∈ Fin)
31 inss1 3816 . . . . . . . 8 (𝐴𝐷) ⊆ 𝐴
3231sseli 3583 . . . . . . 7 (𝑥 ∈ (𝐴𝐷) → 𝑥𝐴)
3332, 6sylan2 491 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶𝐵)
3433ralrimiva 2961 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴𝐷)𝐶𝐵)
351, 4, 30, 34gsummptcl 18298 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵)
361, 3, 2mndrid 17244 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3722, 35, 36syl2anc 692 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3828, 37eqtrd 2655 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3917, 38eqtrd 2655 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3189   ∖ cdif 3556   ∪ cun 3557   ∩ cin 3558  ∅c0 3896   ↦ cmpt 4678  ‘cfv 5852  (class class class)co 6610  Fincfn 7907  Basecbs 15792  +gcplusg 15873  0gc0g 16032   Σg cgsu 16033  Mndcmnd 17226  CMndccmn 18125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-0g 16034  df-gsum 16035  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-cntz 17682  df-cmn 18127 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator