MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzunsnd Structured version   Visualization version   GIF version

Theorem gsumzunsnd 18276
Description: Append an element to a finite group sum, more general version of gsumunsnd 18278. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
gsumzunsnd.b 𝐵 = (Base‘𝐺)
gsumzunsnd.p + = (+g𝐺)
gsumzunsnd.z 𝑍 = (Cntz‘𝐺)
gsumzunsnd.f 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)
gsumzunsnd.g (𝜑𝐺 ∈ Mnd)
gsumzunsnd.a (𝜑𝐴 ∈ Fin)
gsumzunsnd.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzunsnd.x ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumzunsnd.m (𝜑𝑀𝑉)
gsumzunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumzunsnd.y (𝜑𝑌𝐵)
gsumzunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumzunsnd (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝐹(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑍(𝑘)

Proof of Theorem gsumzunsnd
StepHypRef Expression
1 gsumzunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2621 . . 3 (0g𝐺) = (0g𝐺)
3 gsumzunsnd.p . . 3 + = (+g𝐺)
4 gsumzunsnd.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzunsnd.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 7982 . . . 4 {𝑀} ∈ Fin
8 unfi 8171 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
96, 7, 8sylancl 693 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
10 elun 3731 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
11 gsumzunsnd.x . . . . . 6 ((𝜑𝑘𝐴) → 𝑋𝐵)
12 elsni 4165 . . . . . . . 8 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
13 gsumzunsnd.s . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1412, 13sylan2 491 . . . . . . 7 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
15 gsumzunsnd.y . . . . . . . 8 (𝜑𝑌𝐵)
1615adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1714, 16eqeltrd 2698 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
1811, 17jaodan 825 . . . . 5 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
1910, 18sylan2b 492 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
20 gsumzunsnd.f . . . 4 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)
2119, 20fmptd 6340 . . 3 (𝜑𝐹:(𝐴 ∪ {𝑀})⟶𝐵)
22 gsumzunsnd.c . . 3 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2311expcom 451 . . . . . . 7 (𝑘𝐴 → (𝜑𝑋𝐵))
2415adantr 481 . . . . . . . . . 10 ((𝜑𝑘 = 𝑀) → 𝑌𝐵)
2513, 24eqeltrd 2698 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝑋𝐵)
2625expcom 451 . . . . . . . 8 (𝑘 = 𝑀 → (𝜑𝑋𝐵))
2712, 26syl 17 . . . . . . 7 (𝑘 ∈ {𝑀} → (𝜑𝑋𝐵))
2823, 27jaoi 394 . . . . . 6 ((𝑘𝐴𝑘 ∈ {𝑀}) → (𝜑𝑋𝐵))
2910, 28sylbi 207 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑𝑋𝐵))
3029impcom 446 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
31 fvex 6158 . . . . 5 (0g𝐺) ∈ V
3231a1i 11 . . . 4 (𝜑 → (0g𝐺) ∈ V)
3320, 9, 30, 32fsuppmptdm 8230 . . 3 (𝜑𝐹 finSupp (0g𝐺))
34 gsumzunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
35 disjsn 4216 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
3634, 35sylibr 224 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
37 eqidd 2622 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
381, 2, 3, 4, 5, 9, 21, 22, 33, 36, 37gsumzsplit 18248 . 2 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))))
3920reseq1i 5352 . . . . 5 (𝐹𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴)
40 ssun1 3754 . . . . . 6 𝐴 ⊆ (𝐴 ∪ {𝑀})
41 resmpt 5408 . . . . . 6 (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘𝐴𝑋))
4240, 41mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘𝐴𝑋))
4339, 42syl5eq 2667 . . . 4 (𝜑 → (𝐹𝐴) = (𝑘𝐴𝑋))
4443oveq2d 6620 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐴)) = (𝐺 Σg (𝑘𝐴𝑋)))
4520reseq1i 5352 . . . . 5 (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀})
46 ssun2 3755 . . . . . 6 {𝑀} ⊆ (𝐴 ∪ {𝑀})
47 resmpt 5408 . . . . . 6 ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
4846, 47mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
4945, 48syl5eq 2667 . . . 4 (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
5049oveq2d 6620 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))
5144, 50oveq12d 6622 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
52 gsumzunsnd.m . . . 4 (𝜑𝑀𝑉)
531, 5, 52, 15, 13gsumsnd 18273 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
5453oveq2d 6620 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
5538, 51, 543eqtrd 2659 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148  cmpt 4673  ran crn 5075  cres 5076  cfv 5847  (class class class)co 6604  Fincfn 7899  Basecbs 15781  +gcplusg 15862  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Cntzccntz 17669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116
This theorem is referenced by:  mplcoe5  19387
  Copyright terms: Public domain W3C validator