MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   GIF version

Theorem hausmapdom 21213
Description: If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 21702 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hausmapdom ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))

Proof of Theorem hausmapdom
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8 𝑋 = 𝐽
211stcelcls 21174 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
323adant1 1077 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
4 uniexg 6908 . . . . . . . . . . . 12 (𝐽 ∈ Haus → 𝐽 ∈ V)
543ad2ant1 1080 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐽 ∈ V)
61, 5syl5eqel 2702 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝑋 ∈ V)
7 simp3 1061 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 4765 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 nnex 10970 . . . . . . . . 9 ℕ ∈ V
10 elmapg 7815 . . . . . . . . 9 ((𝐴 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝐴𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴))
118, 9, 10sylancl 693 . . . . . . . 8 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑓 ∈ (𝐴𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐴))
1211anbi1d 740 . . . . . . 7 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
1312exbidv 1847 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝐴𝑓(⇝𝑡𝐽)𝑥)))
143, 13bitr4d 271 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥)))
15 df-rex 2913 . . . . 5 (∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥 ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
1614, 15syl6bbr 278 . . . 4 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ ∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥))
17 vex 3189 . . . . 5 𝑥 ∈ V
1817elima 5430 . . . 4 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ↔ ∃𝑓 ∈ (𝐴𝑚 ℕ)𝑓(⇝𝑡𝐽)𝑥)
1916, 18syl6bbr 278 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ))))
2019eqrdv 2619 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)))
21 ovex 6632 . . 3 (𝐴𝑚 ℕ) ∈ V
22 lmfun 21095 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
23223ad2ant1 1080 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → Fun (⇝𝑡𝐽))
24 imadomg 9300 . . 3 ((𝐴𝑚 ℕ) ∈ V → (Fun (⇝𝑡𝐽) → ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ≼ (𝐴𝑚 ℕ)))
2521, 23, 24mpsyl 68 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((⇝𝑡𝐽) “ (𝐴𝑚 ℕ)) ≼ (𝐴𝑚 ℕ))
2620, 25eqbrtrd 4635 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wrex 2908  Vcvv 3186  wss 3555   cuni 4402   class class class wbr 4613  cima 5077  Fun wfun 5841  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  cdom 7897  cn 10964  clsccl 20732  𝑡clm 20940  Hauscha 21022  1st𝜔c1stc 21150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-ac2 9229  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-acn 8712  df-ac 8883  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-top 20621  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-lm 20943  df-haus 21029  df-1stc 21152
This theorem is referenced by:  hauspwdom  21214
  Copyright terms: Public domain W3C validator