MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeores Structured version   Visualization version   GIF version

Theorem hmeores 22381
Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
hmeores.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeores ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))

Proof of Theorem hmeores
StepHypRef Expression
1 hmeocn 22370 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 483 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 hmeores.1 . . . . 5 𝑋 = 𝐽
43cnrest 21895 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
52, 4sylancom 590 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
6 cntop2 21851 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
72, 6syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ Top)
8 eqid 2823 . . . . . 6 𝐾 = 𝐾
98toptopon 21527 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
107, 9sylib 220 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
11 df-ima 5570 . . . . . 6 (𝐹𝑌) = ran (𝐹𝑌)
1211eqimss2i 4028 . . . . 5 ran (𝐹𝑌) ⊆ (𝐹𝑌)
1312a1i 11 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ (𝐹𝑌))
14 imassrn 5942 . . . . 5 (𝐹𝑌) ⊆ ran 𝐹
153, 8cnf 21856 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
162, 15syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹:𝑋 𝐾)
1716frnd 6523 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran 𝐹 𝐾)
1814, 17sstrid 3980 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ⊆ 𝐾)
19 cnrest2 21896 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝑌) ⊆ (𝐹𝑌) ∧ (𝐹𝑌) ⊆ 𝐾) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
2010, 13, 18, 19syl3anc 1367 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
215, 20mpbid 234 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))))
22 hmeocnvcn 22371 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2322adantr 483 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
248, 3cnf 21856 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐽) → 𝐹: 𝐾𝑋)
25 ffun 6519 . . . . 5 (𝐹: 𝐾𝑋 → Fun 𝐹)
26 funcnvres 6434 . . . . 5 (Fun 𝐹(𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
2723, 24, 25, 264syl 19 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
288cnrest 21895 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ (𝐹𝑌) ⊆ 𝐾) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
2923, 18, 28syl2anc 586 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
3027, 29eqeltrd 2915 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
31 cntop1 21850 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
322, 31syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ Top)
333toptopon 21527 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3432, 33sylib 220 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
35 dfdm4 5766 . . . . . 6 dom (𝐹𝑌) = ran (𝐹𝑌)
36 fssres 6546 . . . . . . . 8 ((𝐹:𝑋 𝐾𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
3716, 36sylancom 590 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
3837fdmd 6525 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → dom (𝐹𝑌) = 𝑌)
3935, 38syl5eqr 2872 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) = 𝑌)
40 eqimss 4025 . . . . 5 (ran (𝐹𝑌) = 𝑌 → ran (𝐹𝑌) ⊆ 𝑌)
4139, 40syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ 𝑌)
42 simpr 487 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝑌𝑋)
43 cnrest2 21896 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝐹𝑌) ⊆ 𝑌𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4434, 41, 42, 43syl3anc 1367 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4530, 44mpbid 234 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌)))
46 ishmeo 22369 . 2 ((𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))) ↔ ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))) ∧ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4721, 45, 46sylanbrc 585 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3938   cuni 4840  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  TopOnctopon 21520   Cn ccn 21834  Homeochmeo 22363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-hmeo 22365
This theorem is referenced by:  cvmsss2  32523
  Copyright terms: Public domain W3C validator