MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Visualization version   GIF version

Theorem icccvx 22970
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))

Proof of Theorem icccvx
StepHypRef Expression
1 iccss2 12457 . . . . . . 7 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
21adantl 473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
323adantr3 1177 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
43adantr 472 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
5 iccssre 12468 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
65sselda 3744 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantrr 755 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ)
85sselda 3744 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
98adantrl 754 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → 𝐷 ∈ ℝ)
107, 9jca 555 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
11103adantr3 1177 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
12 simpr3 1238 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1311, 12jca 555 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
14 lincmb01cmp 12528 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1514ex 449 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
16153expa 1112 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷)))
1716imp 444 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝐶 < 𝐷) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1817an32s 881 . . . . 5 ((((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
1913, 18sylan 489 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐶[,]𝐷))
204, 19sseldd 3745 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 < 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
21 oveq2 6822 . . . . . 6 (𝐶 = 𝐷 → ((1 − 𝑇) · 𝐶) = ((1 − 𝑇) · 𝐷))
2221oveq1d 6829 . . . . 5 (𝐶 = 𝐷 → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
23 unitssre 12532 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
2423sseli 3740 . . . . . . . . 9 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
2524recnd 10280 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
2625ad2antll 767 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
278recnd 10280 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℂ)
2827adantrr 755 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ∈ ℂ)
29 ax-1cn 10206 . . . . . . . . . . 11 1 ∈ ℂ
30 npcan 10502 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3129, 30mpan 708 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
3231adantr 472 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
3332oveq1d 6829 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (1 · 𝐷))
34 subcl 10492 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
3529, 34mpan 708 . . . . . . . . . 10 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3635ancri 576 . . . . . . . . 9 (𝑇 ∈ ℂ → ((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ))
37 adddir 10243 . . . . . . . . . 10 (((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
38373expa 1112 . . . . . . . . 9 ((((1 − 𝑇) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
3936, 38sylan 489 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · 𝐷) = (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)))
40 mulid2 10250 . . . . . . . . 9 (𝐷 ∈ ℂ → (1 · 𝐷) = 𝐷)
4140adantl 473 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 · 𝐷) = 𝐷)
4233, 39, 413eqtr3d 2802 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4326, 28, 42syl2anc 696 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
44433adantr1 1175 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐷) + (𝑇 · 𝐷)) = 𝐷)
4522, 44sylan9eqr 2816 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = 𝐷)
46 simplr2 1263 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → 𝐷 ∈ (𝐴[,]𝐵))
4745, 46eqeltrd 2839 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐶 = 𝐷) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
48 iccss2 12457 . . . . . . . 8 ((𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
4948adantl 473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ (𝐴[,]𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5049ancom2s 879 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
51503adantr3 1177 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
5251adantr 472 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (𝐷[,]𝐶) ⊆ (𝐴[,]𝐵))
539, 7jca 555 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
54533adantr3 1177 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5554, 12jca 555 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)))
56 iirev 22949 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
5723, 56sseldi 3742 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℝ)
5857recnd 10280 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ ℂ)
59 recn 10238 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
60 mulcl 10232 . . . . . . . . . . . . . . 15 (((1 − 𝑇) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6158, 59, 60syl2anr 496 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
6261adantll 752 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐶) ∈ ℂ)
63 recn 10238 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
64 mulcl 10232 . . . . . . . . . . . . . . 15 ((𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝑇 · 𝐷) ∈ ℂ)
6525, 63, 64syl2anr 496 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℝ ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6665adantlr 753 . . . . . . . . . . . . 13 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐷) ∈ ℂ)
6762, 66addcomd 10450 . . . . . . . . . . . 12 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
68673adantl3 1174 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)))
69 nncan 10522 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
7029, 69mpan 708 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
7170eqcomd 2766 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → 𝑇 = (1 − (1 − 𝑇)))
7271oveq1d 6829 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (𝑇 · 𝐷) = ((1 − (1 − 𝑇)) · 𝐷))
7372oveq1d 6829 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7425, 73syl 17 . . . . . . . . . . . 12 (𝑇 ∈ (0[,]1) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7574adantl 473 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐷) + ((1 − 𝑇) · 𝐶)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
7668, 75eqtrd 2794 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) = (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)))
77 lincmb01cmp 12528 . . . . . . . . . . 11 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7856, 77sylan2 492 . . . . . . . . . 10 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐷) + ((1 − 𝑇) · 𝐶)) ∈ (𝐷[,]𝐶))
7976, 78eqeltrd 2839 . . . . . . . . 9 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8079ex 449 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
81803expa 1112 . . . . . . 7 (((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) → (𝑇 ∈ (0[,]1) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶)))
8281imp 444 . . . . . 6 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐷 < 𝐶) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8382an32s 881 . . . . 5 ((((𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8455, 83sylan 489 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐷[,]𝐶))
8552, 84sseldd 3745 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) ∧ 𝐷 < 𝐶) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
867, 9lttri4d 10390 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
87863adantr3 1177 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶))
8820, 47, 85, 87mpjao3dan 1544 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))
8988ex 449 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1071  w3a 1072   = wceq 1632  wcel 2139  wss 3715   class class class wbr 4804  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cmin 10478  [,]cicc 12391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-rp 12046  df-icc 12395
This theorem is referenced by:  reparphti  23017
  Copyright terms: Public domain W3C validator