MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Visualization version   GIF version

Theorem reparphti 22843
Description: Lemma for reparpht 22844. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
reparpht.2 (𝜑𝐹 ∈ (II Cn 𝐽))
reparpht.3 (𝜑𝐺 ∈ (II Cn II))
reparpht.4 (𝜑 → (𝐺‘0) = 0)
reparpht.5 (𝜑 → (𝐺‘1) = 1)
reparphti.6 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
Assertion
Ref Expression
reparphti (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem reparphti
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.3 . . 3 (𝜑𝐺 ∈ (II Cn II))
2 reparpht.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
3 cnco 21118 . . 3 ((𝐺 ∈ (II Cn II) ∧ 𝐹 ∈ (II Cn 𝐽)) → (𝐹𝐺) ∈ (II Cn 𝐽))
41, 2, 3syl2anc 694 . 2 (𝜑 → (𝐹𝐺) ∈ (II Cn 𝐽))
5 reparphti.6 . . 3 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
6 iitopon 22729 . . . . 5 II ∈ (TopOn‘(0[,]1))
76a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
8 eqid 2651 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 22634 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
10 cnrest2r 21139 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
127, 7cnmpt2nd 21520 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn II))
13 iirevcn 22776 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
15 oveq2 6698 . . . . . . . . . . 11 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
167, 7, 12, 7, 14, 15cnmpt21 21522 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn II))
178dfii3 22733 . . . . . . . . . . 11 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
1817oveq2i 6701 . . . . . . . . . 10 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
1916, 18syl6eleq 2740 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2011, 19sseldd 3637 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
217, 7cnmpt1st 21519 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn II))
227, 7, 21, 1cnmpt21f 21523 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn II))
2322, 18syl6eleq 2740 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2411, 23sseldd 3637 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
258mulcn 22717 . . . . . . . . 9 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2625a1i 11 . . . . . . . 8 (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
277, 7, 20, 24, 26cnmpt22f 21526 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((1 − 𝑦) · (𝐺𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
2812, 18syl6eleq 2740 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2911, 28sseldd 3637 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
3021, 18syl6eleq 2740 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
3111, 30sseldd 3637 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
327, 7, 29, 31, 26cnmpt22f 21526 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑦 · 𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
338addcn 22715 . . . . . . . 8 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3433a1i 11 . . . . . . 7 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
357, 7, 27, 32, 34cnmpt22f 21526 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
368cnfldtopon 22633 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
38 iiuni 22731 . . . . . . . . . . . . . . 15 (0[,]1) = II
3938, 38cnf 21098 . . . . . . . . . . . . . 14 (𝐺 ∈ (II Cn II) → 𝐺:(0[,]1)⟶(0[,]1))
401, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝐺:(0[,]1)⟶(0[,]1))
4140ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ (0[,]1))
4241adantrr 753 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐺𝑥) ∈ (0[,]1))
43 simprl 809 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 ∈ (0[,]1))
44 simprr 811 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1))
45 0re 10078 . . . . . . . . . . . 12 0 ∈ ℝ
46 1re 10077 . . . . . . . . . . . 12 1 ∈ ℝ
47 icccvx 22796 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1)))
4845, 46, 47mp2an 708 . . . . . . . . . . 11 (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
4942, 43, 44, 48syl3anc 1366 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5049ralrimivva 3000 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
51 eqid 2651 . . . . . . . . . 10 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))
5251fmpt2 7282 . . . . . . . . 9 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5350, 52sylib 208 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
54 frn 6091 . . . . . . . 8 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
5553, 54syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
56 unitssre 12357 . . . . . . . . 9 (0[,]1) ⊆ ℝ
57 ax-resscn 10031 . . . . . . . . 9 ℝ ⊆ ℂ
5856, 57sstri 3645 . . . . . . . 8 (0[,]1) ⊆ ℂ
5958a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
60 cnrest2 21138 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6137, 55, 59, 60syl3anc 1366 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6235, 61mpbid 222 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
6362, 18syl6eleqr 2741 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn II))
647, 7, 63, 2cnmpt21f 21523 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))) ∈ ((II ×t II) Cn 𝐽))
655, 64syl5eqel 2734 . 2 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6640ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ (0[,]1))
6758, 66sseldi 3634 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ ℂ)
6867mulid2d 10096 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · (𝐺𝑠)) = (𝐺𝑠))
6958sseli 3632 . . . . . . . 8 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℂ)
7069adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
7170mul02d 10272 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · 𝑠) = 0)
7268, 71oveq12d 6708 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = ((𝐺𝑠) + 0))
7367addid1d 10274 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐺𝑠) + 0) = (𝐺𝑠))
7472, 73eqtrd 2685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = (𝐺𝑠))
7574fveq2d 6233 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) = (𝐹‘(𝐺𝑠)))
76 simpr 476 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
77 0elunit 12328 . . . 4 0 ∈ (0[,]1)
78 simpr 476 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
7978oveq2d 6706 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = (1 − 0))
80 1m0e1 11169 . . . . . . . . 9 (1 − 0) = 1
8179, 80syl6eq 2701 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = 1)
82 simpl 472 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8382fveq2d 6233 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝐺𝑥) = (𝐺𝑠))
8481, 83oveq12d 6708 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((1 − 𝑦) · (𝐺𝑥)) = (1 · (𝐺𝑠)))
8578, 82oveq12d 6708 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (𝑦 · 𝑥) = (0 · 𝑠))
8684, 85oveq12d 6708 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((1 · (𝐺𝑠)) + (0 · 𝑠)))
8786fveq2d 6233 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
88 fvex 6239 . . . . 5 (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) ∈ V
8987, 5, 88ovmpt2a 6833 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
9076, 77, 89sylancl 695 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
91 fvco3 6314 . . . 4 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9240, 91sylan 487 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9375, 90, 923eqtr4d 2695 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = ((𝐹𝐺)‘𝑠))
94 1elunit 12329 . . . 4 1 ∈ (0[,]1)
95 simpr 476 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
9695oveq2d 6706 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = (1 − 1))
97 1m1e0 11127 . . . . . . . . 9 (1 − 1) = 0
9896, 97syl6eq 2701 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = 0)
99 simpl 472 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
10099fveq2d 6233 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝐺𝑥) = (𝐺𝑠))
10198, 100oveq12d 6708 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((1 − 𝑦) · (𝐺𝑥)) = (0 · (𝐺𝑠)))
10295, 99oveq12d 6708 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 · 𝑥) = (1 · 𝑠))
103101, 102oveq12d 6708 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((0 · (𝐺𝑠)) + (1 · 𝑠)))
104103fveq2d 6233 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
105 fvex 6239 . . . . 5 (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) ∈ V
106104, 5, 105ovmpt2a 6833 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10776, 94, 106sylancl 695 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10867mul02d 10272 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · (𝐺𝑠)) = 0)
10970mulid2d 10096 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · 𝑠) = 𝑠)
110108, 109oveq12d 6708 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = (0 + 𝑠))
11170addid2d 10275 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0 + 𝑠) = 𝑠)
112110, 111eqtrd 2685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = 𝑠)
113112fveq2d 6233 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) = (𝐹𝑠))
114107, 113eqtrd 2685 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹𝑠))
115 reparpht.4 . . . . . . . . 9 (𝜑 → (𝐺‘0) = 0)
116115adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘0) = 0)
117116oveq2d 6706 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = ((1 − 𝑠) · 0))
118 ax-1cn 10032 . . . . . . . . 9 1 ∈ ℂ
119 subcl 10318 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
120118, 70, 119sylancr 696 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
121120mul01d 10273 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 0) = 0)
122117, 121eqtrd 2685 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = 0)
12370mul01d 10273 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 0) = 0)
124122, 123oveq12d 6708 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = (0 + 0))
125 00id 10249 . . . . 5 (0 + 0) = 0
126124, 125syl6eq 2701 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = 0)
127126fveq2d 6233 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) = (𝐹‘0))
128 simpr 476 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
129128oveq2d 6706 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
130 simpl 472 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
131130fveq2d 6233 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘0))
132129, 131oveq12d 6708 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘0)))
133128, 130oveq12d 6708 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 0))
134132, 133oveq12d 6708 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)))
135134fveq2d 6233 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
136 fvex 6239 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) ∈ V
137135, 5, 136ovmpt2a 6833 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
13877, 76, 137sylancr 696 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
139 fvco3 6314 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
14040, 77, 139sylancl 695 . . . . 5 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
141115fveq2d 6233 . . . . 5 (𝜑 → (𝐹‘(𝐺‘0)) = (𝐹‘0))
142140, 141eqtrd 2685 . . . 4 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘0))
143142adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘0))
144127, 138, 1433eqtr4d 2695 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = ((𝐹𝐺)‘0))
145 reparpht.5 . . . . . . . . 9 (𝜑 → (𝐺‘1) = 1)
146145adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = 1)
147146oveq2d 6706 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = ((1 − 𝑠) · 1))
148120mulid1d 10095 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 1) = (1 − 𝑠))
149147, 148eqtrd 2685 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = (1 − 𝑠))
15070mulid1d 10095 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 1) = 𝑠)
151149, 150oveq12d 6708 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = ((1 − 𝑠) + 𝑠))
152 npcan 10328 . . . . . 6 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − 𝑠) + 𝑠) = 1)
153118, 70, 152sylancr 696 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) + 𝑠) = 1)
154151, 153eqtrd 2685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = 1)
155154fveq2d 6233 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) = (𝐹‘1))
156 simpr 476 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
157156oveq2d 6706 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
158 simpl 472 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
159158fveq2d 6233 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘1))
160157, 159oveq12d 6708 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘1)))
161156, 158oveq12d 6708 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 1))
162160, 161oveq12d 6708 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)))
163162fveq2d 6233 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
164 fvex 6239 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) ∈ V
165163, 5, 164ovmpt2a 6833 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
16694, 76, 165sylancr 696 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
167 fvco3 6314 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 1 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
16840, 94, 167sylancl 695 . . . . 5 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
169145fveq2d 6233 . . . . 5 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘1))
170168, 169eqtrd 2685 . . . 4 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘1))
171170adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘1))
172155, 166, 1713eqtr4d 2695 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = ((𝐹𝐺)‘1))
1734, 2, 65, 93, 114, 144, 172isphtpy2d 22833 1 (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wss 3607  cmpt 4762   × cxp 5141  ran crn 5144  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  [,]cicc 12216  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  IIcii 22725  PHtpycphtpy 22814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-ii 22727  df-htpy 22816  df-phtpy 22817
This theorem is referenced by:  reparpht  22844
  Copyright terms: Public domain W3C validator