Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   GIF version

Theorem icceuelpartlem 40695
Description: Lemma for icceuelpart 40696. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpartlem (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))

Proof of Theorem icceuelpartlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6153 . . . . . 6 ((𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) = (𝑃𝐽))
21olcd 408 . . . . 5 ((𝐼 + 1) = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
32a1d 25 . . . 4 ((𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
4 elfzoelz 12419 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
5 elfzoelz 12419 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ ℤ)
6 zltp1le 11379 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
76biimpcd 239 . . . . . . . . . . . . . . . 16 (𝐼 < 𝐽 → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
87adantr 481 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
98impcom 446 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) ≤ 𝐽)
10 df-ne 2791 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽 ↔ ¬ (𝐼 + 1) = 𝐽)
11 necom 2843 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽𝐽 ≠ (𝐼 + 1))
1210, 11sylbb1 227 . . . . . . . . . . . . . . . 16 (¬ (𝐼 + 1) = 𝐽𝐽 ≠ (𝐼 + 1))
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → 𝐽 ≠ (𝐼 + 1))
1413adantl 482 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → 𝐽 ≠ (𝐼 + 1))
159, 14jca 554 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1)))
16 peano2z 11370 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℤ)
1716zred 11434 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℝ)
18 zre 11333 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
1917, 18anim12i 589 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
2019adantr 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
21 ltlen 10090 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2220, 21syl 17 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2315, 22mpbird 247 . . . . . . . . . . . 12 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) < 𝐽)
2423ex 450 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
254, 5, 24syl2an 494 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
2625adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
27 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
28 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
2927, 28iccpartgt 40687 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
30 fzofzp1 12514 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
31 elfzofz 12434 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ (0...𝑀))
32 breq1 4621 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → (𝑖 < 𝑗 ↔ (𝐼 + 1) < 𝑗))
33 fveq2 6153 . . . . . . . . . . . . . 14 (𝑖 = (𝐼 + 1) → (𝑃𝑖) = (𝑃‘(𝐼 + 1)))
3433breq1d 4628 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝑗)))
3532, 34imbi12d 334 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗))))
36 breq2 4622 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼 + 1) < 𝑗 ↔ (𝐼 + 1) < 𝐽))
37 fveq2 6153 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑃𝑗) = (𝑃𝐽))
3837breq2d 4630 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
3936, 38imbi12d 334 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4035, 39rspc2v 3310 . . . . . . . . . . 11 (((𝐼 + 1) ∈ (0...𝑀) ∧ 𝐽 ∈ (0...𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4130, 31, 40syl2an 494 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4229, 41mpan9 486 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4326, 42syld 47 . . . . . . . 8 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4443expdimp 453 . . . . . . 7 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (¬ (𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4544impcom 446 . . . . . 6 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))
4645orcd 407 . . . . 5 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4746ex 450 . . . 4 (¬ (𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
483, 47pm2.61i 176 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4927adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑀 ∈ ℕ)
5028adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
5130adantr 481 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀))
5251adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝐼 + 1) ∈ (0...𝑀))
5349, 50, 52iccpartxr 40679 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
5431adantl 482 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → 𝐽 ∈ (0...𝑀))
5554adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝐽 ∈ (0...𝑀))
5649, 50, 55iccpartxr 40679 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃𝐽) ∈ ℝ*)
5753, 56jca 554 . . . . 5 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
5857adantr 481 . . . 4 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
59 xrleloe 11929 . . . 4 (((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6058, 59syl 17 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6148, 60mpbird 247 . 2 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))
6261exp31 629 1 (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907   class class class wbr 4618  cfv 5852  (class class class)co 6610  cr 9887  0cc0 9888  1c1 9889   + caddc 9891  *cxr 10025   < clt 10026  cle 10027  cn 10972  cz 11329  ...cfz 12276  ..^cfzo 12414  RePartciccp 40673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-iccp 40674
This theorem is referenced by:  icceuelpart  40696
  Copyright terms: Public domain W3C validator