MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzp1 Structured version   Visualization version   GIF version

Theorem fzofzp1 12605
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzofzp1 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))

Proof of Theorem fzofzp1
StepHypRef Expression
1 elfzoel1 12507 . . . 4 (𝐶 ∈ (𝐴..^𝐵) → 𝐴 ∈ ℤ)
2 uzid 11740 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3 peano2uz 11779 . . . 4 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
4 fzoss1 12534 . . . 4 ((𝐴 + 1) ∈ (ℤ𝐴) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1)))
51, 2, 3, 44syl 19 . . 3 (𝐶 ∈ (𝐴..^𝐵) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1)))
6 1z 11445 . . . 4 1 ∈ ℤ
7 fzoaddel 12560 . . . 4 ((𝐶 ∈ (𝐴..^𝐵) ∧ 1 ∈ ℤ) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1)))
86, 7mpan2 707 . . 3 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1)))
95, 8sseldd 3637 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴..^(𝐵 + 1)))
10 elfzoel2 12508 . . 3 (𝐶 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ)
11 fzval3 12576 . . 3 (𝐵 ∈ ℤ → (𝐴...𝐵) = (𝐴..^(𝐵 + 1)))
1210, 11syl 17 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐴...𝐵) = (𝐴..^(𝐵 + 1)))
139, 12eleqtrrd 2733 1 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wss 3607  cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977  cz 11415  cuz 11725  ...cfz 12364  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  fzofzp1b  12606  seqcaopr3  12876  seqcaopr2  12877  seqf1olem2a  12879  swrds1  13497  swrds2  13731  telfsumo  14578  telfsumo2  14579  fsumparts  14582  prodfn0  14670  prodfrec  14671  psgnunilem2  17961  gsumzaddlem  18367  dvfsumle  23829  dvfsumge  23830  dvfsumabs  23831  dvntaylp  24170  taylthlem2  24173  pntlemr  25336  pntlemj  25337  uspgr2wlkeq  26598  wlkres  26623  wlkp1lem6  26631  pthdadjvtx  26682  upgrwlkdvdelem  26688  crctcshwlkn0lem4  26761  crctcshwlkn0lem5  26762  wwlksnred  26855  trlsegvdeglem1  27198  poimirlem24  33563  poimirlem25  33564  poimirlem29  33568  poimirlem31  33570  monoords  39825  fmul01  40130  dvnmptdivc  40471  dvnmul  40476  stoweidlem3  40538  fourierdlem1  40643  fourierdlem12  40654  fourierdlem14  40656  fourierdlem15  40657  fourierdlem20  40662  fourierdlem25  40667  fourierdlem27  40669  fourierdlem41  40683  fourierdlem46  40687  fourierdlem48  40689  fourierdlem49  40690  fourierdlem50  40691  fourierdlem54  40695  fourierdlem63  40704  fourierdlem64  40705  fourierdlem65  40706  fourierdlem69  40710  fourierdlem70  40711  fourierdlem71  40712  fourierdlem72  40713  fourierdlem73  40714  fourierdlem74  40715  fourierdlem75  40716  fourierdlem76  40717  fourierdlem79  40720  fourierdlem80  40721  fourierdlem81  40722  fourierdlem84  40725  fourierdlem88  40729  fourierdlem89  40730  fourierdlem90  40731  fourierdlem91  40732  fourierdlem92  40733  fourierdlem93  40734  fourierdlem94  40735  fourierdlem97  40738  fourierdlem101  40742  fourierdlem102  40743  fourierdlem103  40744  fourierdlem104  40745  fourierdlem111  40752  fourierdlem113  40754  fourierdlem114  40755  fzopred  41657  iccpartipre  41682  iccelpart  41694  iccpartiun  41695  icceuelpartlem  41696  icceuelpart  41697  iccpartdisj  41698  iccpartnel  41699  bgoldbtbndlem2  42019  bgoldbtbndlem3  42020
  Copyright terms: Public domain W3C validator