Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartipre Structured version   Visualization version   GIF version

Theorem iccpartipre 40643
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartipre.i (𝜑𝐼 ∈ (1..^𝑀))
Assertion
Ref Expression
iccpartipre (𝜑 → (𝑃𝐼) ∈ ℝ)

Proof of Theorem iccpartipre
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 nnz 11344 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
4 peano2zm 11365 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5 id 22 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
6 zre 11326 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76lem1d 10902 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀)
84, 5, 73jca 1240 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
93, 8syl 17 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
10 eluz2 11637 . . . . . . 7 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
119, 10sylibr 224 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
121, 11syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
13 fzss2 12320 . . . . 5 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀))
1412, 13syl 17 . . . 4 (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀))
15 fzossfz 12426 . . . . . 6 (1..^𝑀) ⊆ (1...𝑀)
16 iccpartipre.i . . . . . 6 (𝜑𝐼 ∈ (1..^𝑀))
1715, 16sseldi 3586 . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
18 elfzoelz 12408 . . . . . . 7 (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ)
1916, 18syl 17 . . . . . 6 (𝜑𝐼 ∈ ℤ)
201nnzd 11425 . . . . . 6 (𝜑𝑀 ∈ ℤ)
21 elfzm1b 12356 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2219, 20, 21syl2anc 692 . . . . 5 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2317, 22mpbid 222 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1)))
2414, 23sseldd 3589 . . 3 (𝜑 → (𝐼 − 1) ∈ (0...𝑀))
251, 2, 24iccpartxr 40641 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*)
26 1eluzge0 11676 . . . . . 6 1 ∈ (ℤ‘0)
27 fzoss1 12433 . . . . . 6 (1 ∈ (ℤ‘0) → (1..^𝑀) ⊆ (0..^𝑀))
2826, 27mp1i 13 . . . . 5 (𝜑 → (1..^𝑀) ⊆ (0..^𝑀))
29 fzossfz 12426 . . . . 5 (0..^𝑀) ⊆ (0...𝑀)
3028, 29syl6ss 3600 . . . 4 (𝜑 → (1..^𝑀) ⊆ (0...𝑀))
3130, 16sseldd 3589 . . 3 (𝜑𝐼 ∈ (0...𝑀))
321, 2, 31iccpartxr 40641 . 2 (𝜑 → (𝑃𝐼) ∈ ℝ*)
3328, 16sseldd 3589 . . . 4 (𝜑𝐼 ∈ (0..^𝑀))
34 fzofzp1 12503 . . . 4 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
3533, 34syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
361, 2, 35iccpartxr 40641 . 2 (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
371, 2, 17iccpartgtprec 40642 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
38 iccpartimp 40639 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
391, 2, 33, 38syl3anc 1323 . . 3 (𝜑 → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
4039simprd 479 . 2 (𝜑 → (𝑃𝐼) < (𝑃‘(𝐼 + 1)))
41 xrre2 11943 . 2 ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃𝐼) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃𝐼) ∈ ℝ)
4225, 32, 36, 37, 40, 41syl32anc 1331 1 (𝜑 → (𝑃𝐼) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1992  wss 3560   class class class wbr 4618  cfv 5850  (class class class)co 6605  𝑚 cmap 7803  cr 9880  0cc0 9881  1c1 9882   + caddc 9884  *cxr 10018   < clt 10019  cle 10020  cmin 10211  cn 10965  cz 11322  cuz 11631  ...cfz 12265  ..^cfzo 12403  RePartciccp 40635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-iccp 40636
This theorem is referenced by:  iccpartiltu  40644  iccpartigtl  40645  iccpartgt  40649  bgoldbtbndlem3  40972
  Copyright terms: Public domain W3C validator