Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartipre Structured version   Visualization version   GIF version

Theorem iccpartipre 43601
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartipre.i (𝜑𝐼 ∈ (1..^𝑀))
Assertion
Ref Expression
iccpartipre (𝜑 → (𝑃𝐼) ∈ ℝ)

Proof of Theorem iccpartipre
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 nnz 12005 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
4 peano2zm 12026 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5 id 22 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
6 zre 11986 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76lem1d 11573 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀)
84, 5, 73jca 1124 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
93, 8syl 17 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
10 eluz2 12250 . . . . . . 7 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
119, 10sylibr 236 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
121, 11syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
13 fzss2 12948 . . . . 5 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀))
1412, 13syl 17 . . . 4 (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀))
15 fzossfz 13057 . . . . . 6 (1..^𝑀) ⊆ (1...𝑀)
16 iccpartipre.i . . . . . 6 (𝜑𝐼 ∈ (1..^𝑀))
1715, 16sseldi 3965 . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
18 elfzoelz 13039 . . . . . . 7 (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ)
1916, 18syl 17 . . . . . 6 (𝜑𝐼 ∈ ℤ)
201nnzd 12087 . . . . . 6 (𝜑𝑀 ∈ ℤ)
21 elfzm1b 12986 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2219, 20, 21syl2anc 586 . . . . 5 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2317, 22mpbid 234 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1)))
2414, 23sseldd 3968 . . 3 (𝜑 → (𝐼 − 1) ∈ (0...𝑀))
251, 2, 24iccpartxr 43599 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*)
26 1eluzge0 12293 . . . . . 6 1 ∈ (ℤ‘0)
27 fzoss1 13065 . . . . . 6 (1 ∈ (ℤ‘0) → (1..^𝑀) ⊆ (0..^𝑀))
2826, 27mp1i 13 . . . . 5 (𝜑 → (1..^𝑀) ⊆ (0..^𝑀))
29 fzossfz 13057 . . . . 5 (0..^𝑀) ⊆ (0...𝑀)
3028, 29sstrdi 3979 . . . 4 (𝜑 → (1..^𝑀) ⊆ (0...𝑀))
3130, 16sseldd 3968 . . 3 (𝜑𝐼 ∈ (0...𝑀))
321, 2, 31iccpartxr 43599 . 2 (𝜑 → (𝑃𝐼) ∈ ℝ*)
3328, 16sseldd 3968 . . . 4 (𝜑𝐼 ∈ (0..^𝑀))
34 fzofzp1 13135 . . . 4 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
3533, 34syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
361, 2, 35iccpartxr 43599 . 2 (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
371, 2, 17iccpartgtprec 43600 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
38 iccpartimp 43597 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
391, 2, 33, 38syl3anc 1367 . . 3 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
4039simprd 498 . 2 (𝜑 → (𝑃𝐼) < (𝑃‘(𝐼 + 1)))
41 xrre2 12564 . 2 ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃𝐼) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃𝐼) ∈ ℝ)
4225, 32, 36, 37, 40, 41syl32anc 1374 1 (𝜑 → (𝑃𝐼) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  m cmap 8406  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  *cxr 10674   < clt 10675  cle 10676  cmin 10870  cn 11638  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034  RePartciccp 43593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-iccp 43594
This theorem is referenced by:  iccpartiltu  43602  iccpartigtl  43603  iccpartgt  43607  bgoldbtbndlem3  43992
  Copyright terms: Public domain W3C validator