Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartigtl Structured version   Visualization version   GIF version

Theorem iccpartigtl 39762
Description: If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartigtl (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartigtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ral0 4023 . . . 4 𝑖 ∈ ∅ (𝑃‘0) < (𝑃𝑖)
2 oveq2 6531 . . . . . 6 (𝑀 = 1 → (1..^𝑀) = (1..^1))
3 fzo0 12312 . . . . . 6 (1..^1) = ∅
42, 3syl6eq 2655 . . . . 5 (𝑀 = 1 → (1..^𝑀) = ∅)
54raleqdv 3116 . . . 4 (𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝑃‘0) < (𝑃𝑖)))
61, 5mpbiri 246 . . 3 (𝑀 = 1 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
76a1d 25 . 2 (𝑀 = 1 → (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
8 iccpartgtprec.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
9 iccpartgtprec.p . . . . . 6 (𝜑𝑃 ∈ (RePart‘𝑀))
108nnnn0d 11194 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
11 0elfz 12256 . . . . . . 7 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
138, 9, 12iccpartxr 39758 . . . . 5 (𝜑 → (𝑃‘0) ∈ ℝ*)
1413adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
15 elxr 11781 . . . . 5 ((𝑃‘0) ∈ ℝ* ↔ ((𝑃‘0) ∈ ℝ ∨ (𝑃‘0) = +∞ ∨ (𝑃‘0) = -∞))
16 0zd 11218 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 0 ∈ ℤ)
17 elfzouz 12294 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (ℤ‘1))
18 0p1e1 10975 . . . . . . . . . . . 12 (0 + 1) = 1
1918fveq2i 6087 . . . . . . . . . . 11 (ℤ‘(0 + 1)) = (ℤ‘1)
2017, 19syl6eleqr 2694 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (ℤ‘(0 + 1)))
2120adantl 480 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (ℤ‘(0 + 1)))
22 fveq2 6084 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2322eqcomd 2611 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑃‘0) = (𝑃𝑘))
2423eleq1d 2667 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑃‘0) ∈ ℝ ↔ (𝑃𝑘) ∈ ℝ))
2524biimpcd 237 . . . . . . . . . . 11 ((𝑃‘0) ∈ ℝ → (𝑘 = 0 → (𝑃𝑘) ∈ ℝ))
2625ad3antrrr 761 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 = 0 → (𝑃𝑘) ∈ ℝ))
278adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑀 ∈ ℕ)
289adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑃 ∈ (RePart‘𝑀))
29 elfz2nn0 12251 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...𝑖) ↔ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖))
30 elfzo2 12293 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
31 simpl1 1056 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 ∈ ℕ0)
32 simpr2 1060 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑀 ∈ ℤ)
33 nn0ge0 11161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
34 0red 9893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 0 ∈ ℝ)
35 eluzelre 11526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (ℤ‘1) → 𝑖 ∈ ℝ)
3635adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 𝑖 ∈ ℝ)
37 zre 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
3837adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
39 lelttr 9975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑖𝑖 < 𝑀) → 0 < 𝑀))
4034, 36, 38, 39syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → ((0 ≤ 𝑖𝑖 < 𝑀) → 0 < 𝑀))
4140expcomd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 → (0 ≤ 𝑖 → 0 < 𝑀)))
42413impia 1252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (0 ≤ 𝑖 → 0 < 𝑀))
4333, 42syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ ℕ0 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 0 < 𝑀))
44433ad2ant2 1075 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 0 < 𝑀))
4544imp 443 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 0 < 𝑀)
46 elnnz 11216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
4732, 45, 46sylanbrc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑀 ∈ ℕ)
48 nn0re 11144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4948ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑘 ∈ ℝ)
50 nn0re 11144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
5150adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
5251adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑖 ∈ ℝ)
5338adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑀 ∈ ℝ)
54 lelttr 9975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑘𝑖𝑖 < 𝑀) → 𝑘 < 𝑀))
5554expd 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))
5649, 52, 53, 55syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))
5756exp31 627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))))
5857com34 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → (𝑘𝑖 → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑖 < 𝑀𝑘 < 𝑀)))))
5958com35 95 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → (𝑖 < 𝑀 → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖𝑘 < 𝑀)))))
60593imp 1248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖𝑘 < 𝑀)))
6160expdcom 453 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ0 → (𝑖 ∈ ℕ0 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑘𝑖𝑘 < 𝑀))))
6261com34 88 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ0 → (𝑖 ∈ ℕ0 → (𝑘𝑖 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑘 < 𝑀))))
63623imp1 1271 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 < 𝑀)
64 elfzo0 12327 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (0..^𝑀) ↔ (𝑘 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑘 < 𝑀))
6531, 47, 63, 64syl3anbrc 1238 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 ∈ (0..^𝑀))
6665ex 448 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑘 ∈ (0..^𝑀)))
6730, 66syl5bi 230 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
6829, 67sylbi 205 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...𝑖) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
6968adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
7069impcom 444 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ∈ (0..^𝑀))
71 simpr 475 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → 𝑘 ≠ 0)
7271adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ≠ 0)
73 fzo1fzo0n0 12337 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (0..^𝑀) ∧ 𝑘 ≠ 0))
7470, 72, 73sylanbrc 694 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ∈ (1..^𝑀))
7574adantl 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑘 ∈ (1..^𝑀))
7627, 28, 75iccpartipre 39760 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → (𝑃𝑘) ∈ ℝ)
7776exp32 628 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (1..^𝑀) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ)))
7877ad2antrl 759 . . . . . . . . . . . 12 (((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (𝑖 ∈ (1..^𝑀) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ)))
7978imp 443 . . . . . . . . . . 11 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ))
8079expdimp 451 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 ≠ 0 → (𝑃𝑘) ∈ ℝ))
8126, 80pm2.61dne 2863 . . . . . . . . 9 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑃𝑘) ∈ ℝ)
828adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
8382ad3antlr 762 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℕ)
849adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
8584ad3antlr 762 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑃 ∈ (RePart‘𝑀))
86 elfzoelz 12290 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ ℤ)
8786adantl 480 . . . . . . . . . . . . . . 15 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ ℤ)
88 fzoval 12291 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0..^𝑖) = (0...(𝑖 − 1)))
8988eqcomd 2611 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (0...(𝑖 − 1)) = (0..^𝑖))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0...(𝑖 − 1)) = (0..^𝑖))
9190eleq2d 2668 . . . . . . . . . . . . 13 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0...(𝑖 − 1)) ↔ 𝑘 ∈ (0..^𝑖)))
92 elfzouz2 12304 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ𝑖))
9392adantl 480 . . . . . . . . . . . . . . 15 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ (ℤ𝑖))
94 fzoss2 12316 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ𝑖) → (0..^𝑖) ⊆ (0..^𝑀))
9593, 94syl 17 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0..^𝑖) ⊆ (0..^𝑀))
9695sseld 3562 . . . . . . . . . . . . 13 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0..^𝑖) → 𝑘 ∈ (0..^𝑀)))
9791, 96sylbid 228 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0...(𝑖 − 1)) → 𝑘 ∈ (0..^𝑀)))
9897imp 443 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑘 ∈ (0..^𝑀))
99 iccpartimp 39756 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
10083, 85, 98, 99syl3anc 1317 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
101100simprd 477 . . . . . . . . 9 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
10216, 21, 81, 101smonoord 39745 . . . . . . . 8 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃𝑖))
103102ralrimiva 2944 . . . . . . 7 (((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
104103ex 448 . . . . . 6 ((𝑃‘0) ∈ ℝ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
105 lbfzo0 12326 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
1068, 105sylibr 222 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0..^𝑀))
1078, 9, 1063jca 1234 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
108107ad2antrl 759 . . . . . . . . . . . . 13 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
109108adantr 479 . . . . . . . . . . . 12 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
110 iccpartimp 39756 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
111109, 110syl 17 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
112111simprd 477 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃‘(0 + 1)))
113 breq1 4576 . . . . . . . . . . . 12 ((𝑃‘0) = +∞ → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
114113adantr 479 . . . . . . . . . . 11 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
115114adantr 479 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
116112, 115mpbid 220 . . . . . . . . 9 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → +∞ < (𝑃‘(0 + 1)))
1178ad2antrl 759 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → 𝑀 ∈ ℕ)
118117adantr 479 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ)
1199ad2antrl 759 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → 𝑃 ∈ (RePart‘𝑀))
120119adantr 479 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
121 1nn0 11151 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
122121a1i 11 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℕ0)
123 nnnn0 11142 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
124 nnge1 10889 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
125122, 123, 1243jca 1234 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
1268, 125syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
127 elfz2nn0 12251 . . . . . . . . . . . . . . 15 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
128126, 127sylibr 222 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ (0...𝑀))
12918, 128syl5eqel 2687 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ∈ (0...𝑀))
130129ad2antrl 759 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (0 + 1) ∈ (0...𝑀))
131130adantr 479 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0 + 1) ∈ (0...𝑀))
132118, 120, 131iccpartxr 39758 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘(0 + 1)) ∈ ℝ*)
133 pnfnlt 11795 . . . . . . . . . 10 ((𝑃‘(0 + 1)) ∈ ℝ* → ¬ +∞ < (𝑃‘(0 + 1)))
134132, 133syl 17 . . . . . . . . 9 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ¬ +∞ < (𝑃‘(0 + 1)))
135116, 134pm2.21dd 184 . . . . . . . 8 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃𝑖))
136135ralrimiva 2944 . . . . . . 7 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
137136ex 448 . . . . . 6 ((𝑃‘0) = +∞ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
1388adantr 479 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ)
1399adantr 479 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
140 simpr 475 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (1..^𝑀))
141138, 139, 140iccpartipre 39760 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) ∈ ℝ)
142 mnflt 11790 . . . . . . . . . . 11 ((𝑃𝑖) ∈ ℝ → -∞ < (𝑃𝑖))
143141, 142syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1..^𝑀)) → -∞ < (𝑃𝑖))
144143ralrimiva 2944 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖))
145144ad2antrl 759 . . . . . . . 8 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖))
146 breq1 4576 . . . . . . . . . 10 ((𝑃‘0) = -∞ → ((𝑃‘0) < (𝑃𝑖) ↔ -∞ < (𝑃𝑖)))
147146adantr 479 . . . . . . . . 9 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ((𝑃‘0) < (𝑃𝑖) ↔ -∞ < (𝑃𝑖)))
148147ralbidv 2964 . . . . . . . 8 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) ↔ ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖)))
149145, 148mpbird 245 . . . . . . 7 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
150149ex 448 . . . . . 6 ((𝑃‘0) = -∞ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
151104, 137, 1503jaoi 1382 . . . . 5 (((𝑃‘0) ∈ ℝ ∨ (𝑃‘0) = +∞ ∨ (𝑃‘0) = -∞) → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
15215, 151sylbi 205 . . . 4 ((𝑃‘0) ∈ ℝ* → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
15314, 152mpcom 37 . . 3 ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
154153expcom 449 . 2 𝑀 = 1 → (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
1557, 154pm2.61i 174 1 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3o 1029  w3a 1030   = wceq 1474  wcel 1975  wne 2775  wral 2891  wss 3535  c0 3869   class class class wbr 4573  cfv 5786  (class class class)co 6523  𝑚 cmap 7717  cr 9787  0cc0 9788  1c1 9789   + caddc 9791  +∞cpnf 9923  -∞cmnf 9924  *cxr 9925   < clt 9926  cle 9927  cmin 10113  cn 10863  0cn0 11135  cz 11206  cuz 11515  ...cfz 12148  ..^cfzo 12285  RePartciccp 39752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-iccp 39753
This theorem is referenced by:  iccpartlt  39763  iccpartgtl  39765  iccpartgt  39766
  Copyright terms: Public domain W3C validator