Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartigtl Structured version   Visualization version   GIF version

Theorem iccpartigtl 43603
Description: If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartigtl (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartigtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ral0 4456 . . . 4 𝑖 ∈ ∅ (𝑃‘0) < (𝑃𝑖)
2 oveq2 7164 . . . . . 6 (𝑀 = 1 → (1..^𝑀) = (1..^1))
3 fzo0 13062 . . . . . 6 (1..^1) = ∅
42, 3syl6eq 2872 . . . . 5 (𝑀 = 1 → (1..^𝑀) = ∅)
54raleqdv 3415 . . . 4 (𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝑃‘0) < (𝑃𝑖)))
61, 5mpbiri 260 . . 3 (𝑀 = 1 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
76a1d 25 . 2 (𝑀 = 1 → (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
8 iccpartgtprec.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
9 iccpartgtprec.p . . . . . 6 (𝜑𝑃 ∈ (RePart‘𝑀))
108nnnn0d 11956 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
11 0elfz 13005 . . . . . . 7 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
138, 9, 12iccpartxr 43599 . . . . 5 (𝜑 → (𝑃‘0) ∈ ℝ*)
1413adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
15 elxr 12512 . . . . 5 ((𝑃‘0) ∈ ℝ* ↔ ((𝑃‘0) ∈ ℝ ∨ (𝑃‘0) = +∞ ∨ (𝑃‘0) = -∞))
16 0zd 11994 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 0 ∈ ℤ)
17 elfzouz 13043 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (ℤ‘1))
18 0p1e1 11760 . . . . . . . . . . . 12 (0 + 1) = 1
1918fveq2i 6673 . . . . . . . . . . 11 (ℤ‘(0 + 1)) = (ℤ‘1)
2017, 19eleqtrrdi 2924 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (ℤ‘(0 + 1)))
2120adantl 484 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (ℤ‘(0 + 1)))
22 fveq2 6670 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2322eqcomd 2827 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑃‘0) = (𝑃𝑘))
2423eleq1d 2897 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑃‘0) ∈ ℝ ↔ (𝑃𝑘) ∈ ℝ))
2524biimpcd 251 . . . . . . . . . . 11 ((𝑃‘0) ∈ ℝ → (𝑘 = 0 → (𝑃𝑘) ∈ ℝ))
2625ad3antrrr 728 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 = 0 → (𝑃𝑘) ∈ ℝ))
278adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑀 ∈ ℕ)
289adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑃 ∈ (RePart‘𝑀))
29 elfz2nn0 12999 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...𝑖) ↔ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖))
30 elfzo2 13042 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
31 simpl1 1187 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 ∈ ℕ0)
32 simpr2 1191 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑀 ∈ ℤ)
33 nn0ge0 11923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
34 0red 10644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 0 ∈ ℝ)
35 eluzelre 12255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (ℤ‘1) → 𝑖 ∈ ℝ)
3635adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 𝑖 ∈ ℝ)
37 zre 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
3837adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
39 lelttr 10731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑖𝑖 < 𝑀) → 0 < 𝑀))
4034, 36, 38, 39syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → ((0 ≤ 𝑖𝑖 < 𝑀) → 0 < 𝑀))
4140expcomd 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 → (0 ≤ 𝑖 → 0 < 𝑀)))
42413impia 1113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (0 ≤ 𝑖 → 0 < 𝑀))
4333, 42syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ ℕ0 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 0 < 𝑀))
44433ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 0 < 𝑀))
4544imp 409 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 0 < 𝑀)
46 elnnz 11992 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
4732, 45, 46sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑀 ∈ ℕ)
48 nn0re 11907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4948ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑘 ∈ ℝ)
50 nn0re 11907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
5150adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
5251adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑖 ∈ ℝ)
5338adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑀 ∈ ℝ)
54 lelttr 10731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑘𝑖𝑖 < 𝑀) → 𝑘 < 𝑀))
5554expd 418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))
5649, 52, 53, 55syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) ∧ (𝑘 ∈ ℕ0𝑖 ∈ ℕ0)) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))
5756exp31 422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖 → (𝑖 < 𝑀𝑘 < 𝑀)))))
5857com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → (𝑘𝑖 → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑖 < 𝑀𝑘 < 𝑀)))))
5958com35 98 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (ℤ‘1) → (𝑀 ∈ ℤ → (𝑖 < 𝑀 → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖𝑘 < 𝑀)))))
60593imp 1107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0) → (𝑘𝑖𝑘 < 𝑀)))
6160expdcom 417 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ0 → (𝑖 ∈ ℕ0 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑘𝑖𝑘 < 𝑀))))
6261com34 91 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ0 → (𝑖 ∈ ℕ0 → (𝑘𝑖 → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑘 < 𝑀))))
63623imp1 1343 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 < 𝑀)
64 elfzo0 13079 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (0..^𝑀) ↔ (𝑘 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑘 < 𝑀))
6531, 47, 63, 64syl3anbrc 1339 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) ∧ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀)) → 𝑘 ∈ (0..^𝑀))
6665ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑘 ∈ (0..^𝑀)))
6730, 66syl5bi 244 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑖 ∈ ℕ0𝑘𝑖) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
6829, 67sylbi 219 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...𝑖) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
6968adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑖 ∈ (1..^𝑀) → 𝑘 ∈ (0..^𝑀)))
7069impcom 410 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ∈ (0..^𝑀))
71 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → 𝑘 ≠ 0)
7271adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ≠ 0)
73 fzo1fzo0n0 13089 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (0..^𝑀) ∧ 𝑘 ≠ 0))
7470, 72, 73sylanbrc 585 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0)) → 𝑘 ∈ (1..^𝑀))
7574adantl 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → 𝑘 ∈ (1..^𝑀))
7627, 28, 75iccpartipre 43601 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1..^𝑀) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0))) → (𝑃𝑘) ∈ ℝ)
7776exp32 423 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (1..^𝑀) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ)))
7877ad2antrl 726 . . . . . . . . . . . 12 (((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (𝑖 ∈ (1..^𝑀) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ)))
7978imp 409 . . . . . . . . . . 11 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ((𝑘 ∈ (0...𝑖) ∧ 𝑘 ≠ 0) → (𝑃𝑘) ∈ ℝ))
8079expdimp 455 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 ≠ 0 → (𝑃𝑘) ∈ ℝ))
8126, 80pm2.61dne 3103 . . . . . . . . 9 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑃𝑘) ∈ ℝ)
828adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
8382ad3antlr 729 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℕ)
849adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
8584ad3antlr 729 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑃 ∈ (RePart‘𝑀))
86 elfzoelz 13039 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ ℤ)
8786adantl 484 . . . . . . . . . . . . . . 15 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ ℤ)
88 fzoval 13040 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0..^𝑖) = (0...(𝑖 − 1)))
8988eqcomd 2827 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (0...(𝑖 − 1)) = (0..^𝑖))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0...(𝑖 − 1)) = (0..^𝑖))
9190eleq2d 2898 . . . . . . . . . . . . 13 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0...(𝑖 − 1)) ↔ 𝑘 ∈ (0..^𝑖)))
92 elfzouz2 13053 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ𝑖))
9392adantl 484 . . . . . . . . . . . . . . 15 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ (ℤ𝑖))
94 fzoss2 13066 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ𝑖) → (0..^𝑖) ⊆ (0..^𝑀))
9593, 94syl 17 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0..^𝑖) ⊆ (0..^𝑀))
9695sseld 3966 . . . . . . . . . . . . 13 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0..^𝑖) → 𝑘 ∈ (0..^𝑀)))
9791, 96sylbid 242 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑘 ∈ (0...(𝑖 − 1)) → 𝑘 ∈ (0..^𝑀)))
9897imp 409 . . . . . . . . . . 11 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → 𝑘 ∈ (0..^𝑀))
99 iccpartimp 43597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
10083, 85, 98, 99syl3anc 1367 . . . . . . . . . 10 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
101100simprd 498 . . . . . . . . 9 (((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) ∧ 𝑘 ∈ (0...(𝑖 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
10216, 21, 81, 101smonoord 43551 . . . . . . . 8 ((((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃𝑖))
103102ralrimiva 3182 . . . . . . 7 (((𝑃‘0) ∈ ℝ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
104103ex 415 . . . . . 6 ((𝑃‘0) ∈ ℝ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
105 lbfzo0 13078 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
1068, 105sylibr 236 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0..^𝑀))
1078, 9, 1063jca 1124 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
108107ad2antrl 726 . . . . . . . . . . . . 13 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
109108adantr 483 . . . . . . . . . . . 12 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)))
110 iccpartimp 43597 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
111109, 110syl 17 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
112111simprd 498 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃‘(0 + 1)))
113 breq1 5069 . . . . . . . . . . . 12 ((𝑃‘0) = +∞ → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
114113adantr 483 . . . . . . . . . . 11 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
115114adantr 483 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ((𝑃‘0) < (𝑃‘(0 + 1)) ↔ +∞ < (𝑃‘(0 + 1))))
116112, 115mpbid 234 . . . . . . . . 9 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → +∞ < (𝑃‘(0 + 1)))
1178ad2antrl 726 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → 𝑀 ∈ ℕ)
118117adantr 483 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ)
1199ad2antrl 726 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → 𝑃 ∈ (RePart‘𝑀))
120119adantr 483 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
121 1nn0 11914 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
122121a1i 11 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℕ0)
123 nnnn0 11905 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
124 nnge1 11666 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
125122, 123, 1243jca 1124 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
1268, 125syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
127 elfz2nn0 12999 . . . . . . . . . . . . . . 15 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
128126, 127sylibr 236 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ (0...𝑀))
12918, 128eqeltrid 2917 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ∈ (0...𝑀))
130129ad2antrl 726 . . . . . . . . . . . 12 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (0 + 1) ∈ (0...𝑀))
131130adantr 483 . . . . . . . . . . 11 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (0 + 1) ∈ (0...𝑀))
132118, 120, 131iccpartxr 43599 . . . . . . . . . 10 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘(0 + 1)) ∈ ℝ*)
133 pnfnlt 12524 . . . . . . . . . 10 ((𝑃‘(0 + 1)) ∈ ℝ* → ¬ +∞ < (𝑃‘(0 + 1)))
134132, 133syl 17 . . . . . . . . 9 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → ¬ +∞ < (𝑃‘(0 + 1)))
135116, 134pm2.21dd 197 . . . . . . . 8 ((((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘0) < (𝑃𝑖))
136135ralrimiva 3182 . . . . . . 7 (((𝑃‘0) = +∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
137136ex 415 . . . . . 6 ((𝑃‘0) = +∞ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
1388adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ)
1399adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
140 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (1..^𝑀))
141138, 139, 140iccpartipre 43601 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) ∈ ℝ)
142 mnflt 12519 . . . . . . . . . . 11 ((𝑃𝑖) ∈ ℝ → -∞ < (𝑃𝑖))
143141, 142syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1..^𝑀)) → -∞ < (𝑃𝑖))
144143ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖))
145144ad2antrl 726 . . . . . . . 8 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖))
146 breq1 5069 . . . . . . . . . 10 ((𝑃‘0) = -∞ → ((𝑃‘0) < (𝑃𝑖) ↔ -∞ < (𝑃𝑖)))
147146adantr 483 . . . . . . . . 9 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ((𝑃‘0) < (𝑃𝑖) ↔ -∞ < (𝑃𝑖)))
148147ralbidv 3197 . . . . . . . 8 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) ↔ ∀𝑖 ∈ (1..^𝑀)-∞ < (𝑃𝑖)))
149145, 148mpbird 259 . . . . . . 7 (((𝑃‘0) = -∞ ∧ (𝜑 ∧ ¬ 𝑀 = 1)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
150149ex 415 . . . . . 6 ((𝑃‘0) = -∞ → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
151104, 137, 1503jaoi 1423 . . . . 5 (((𝑃‘0) ∈ ℝ ∨ (𝑃‘0) = +∞ ∨ (𝑃‘0) = -∞) → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
15215, 151sylbi 219 . . . 4 ((𝑃‘0) ∈ ℝ* → ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
15314, 152mpcom 38 . . 3 ((𝜑 ∧ ¬ 𝑀 = 1) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
154153expcom 416 . 2 𝑀 = 1 → (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖)))
1557, 154pm2.61i 184 1 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wss 3936  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  m cmap 8406  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  cn 11638  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034  RePartciccp 43593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-iccp 43594
This theorem is referenced by:  iccpartlt  43604  iccpartgtl  43606  iccpartgt  43607
  Copyright terms: Public domain W3C validator