MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfsup Structured version   Visualization version   GIF version

Theorem icopnfsup 12601
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
icopnfsup ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)

Proof of Theorem icopnfsup
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
2 pnfxr 10037 . . 3 +∞ ∈ ℝ*
32a1i 11 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → +∞ ∈ ℝ*)
4 nltpnft 11939 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
54necon2abid 2838 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
65biimpar 502 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
7 lbico1 12167 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ (𝐴[,)+∞))
81, 3, 6, 7syl3anc 1323 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ (𝐴[,)+∞))
9 ne0i 3902 . . 3 (𝐴 ∈ (𝐴[,)+∞) → (𝐴[,)+∞) ≠ ∅)
108, 9syl 17 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴[,)+∞) ≠ ∅)
11 df-ico 12120 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
12 idd 24 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞))
13 xrltle 11926 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞))
14 xrltle 11926 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
15 idd 24 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤𝐴𝑤))
1611, 12, 13, 14, 15ixxub 12135 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴[,)+∞) ≠ ∅) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
171, 3, 10, 16syl3anc 1323 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  c0 3896   class class class wbr 4618  (class class class)co 6605  supcsup 8291  +∞cpnf 10016  *cxr 10018   < clt 10019  cle 10020  [,)cico 12116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-ico 12120
This theorem is referenced by:  dvfsumrlimge0  23692  dvfsumrlim2  23694  limsupresico  39323
  Copyright terms: Public domain W3C validator