MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipopos Structured version   Visualization version   GIF version

Theorem ipopos 17088
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipopos.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipopos 𝐼 ∈ Poset

Proof of Theorem ipopos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipopos.i . . . . 5 𝐼 = (toInc‘𝐹)
2 fvex 6163 . . . . 5 (toInc‘𝐹) ∈ V
31, 2eqeltri 2694 . . . 4 𝐼 ∈ V
43a1i 11 . . 3 (𝐹 ∈ V → 𝐼 ∈ V)
51ipobas 17083 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘𝐼))
6 eqidd 2622 . . 3 (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼))
7 ssid 3608 . . . 4 𝑎𝑎
8 eqid 2621 . . . . . 6 (le‘𝐼) = (le‘𝐼)
91, 8ipole 17086 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
1093anidm23 1382 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
117, 10mpbiri 248 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹) → 𝑎(le‘𝐼)𝑎)
121, 8ipole 17086 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
131, 8ipole 17086 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
14133com23 1268 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
1512, 14anbi12d 746 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) ↔ (𝑎𝑏𝑏𝑎)))
16 simpl 473 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑎𝑏)
17 simpr 477 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑏𝑎)
1816, 17eqssd 3604 . . . 4 ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏)
1915, 18syl6bi 243 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏))
20 sstr 3595 . . . . 5 ((𝑎𝑏𝑏𝑐) → 𝑎𝑐)
2120a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
22123adant3r3 1273 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
231, 8ipole 17086 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
24233adant3r1 1271 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
2522, 24anbi12d 746 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) ↔ (𝑎𝑏𝑏𝑐)))
261, 8ipole 17086 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
27263adant3r2 1272 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
2821, 25, 273imtr4d 283 . . 3 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐))
294, 5, 6, 11, 19, 28isposd 16883 . 2 (𝐹 ∈ V → 𝐼 ∈ Poset)
30 fvprc 6147 . . . 4 𝐹 ∈ V → (toInc‘𝐹) = ∅)
311, 30syl5eq 2667 . . 3 𝐹 ∈ V → 𝐼 = ∅)
32 0pos 16882 . . 3 ∅ ∈ Poset
3331, 32syl6eqel 2706 . 2 𝐹 ∈ V → 𝐼 ∈ Poset)
3429, 33pm2.61i 176 1 𝐼 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3189  wss 3559  c0 3896   class class class wbr 4618  cfv 5852  lecple 15876  Posetcpo 16868  toInccipo 17079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-tset 15888  df-ple 15889  df-ocomp 15891  df-poset 16874  df-ipo 17080
This theorem is referenced by:  isipodrs  17089  mrelatglb  17112  mrelatglb0  17113  mrelatlub  17114  mreclatBAD  17115
  Copyright terms: Public domain W3C validator