MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipopos Structured version   Visualization version   GIF version

Theorem ipopos 17770
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipopos.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipopos 𝐼 ∈ Poset

Proof of Theorem ipopos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipopos.i . . . . 5 𝐼 = (toInc‘𝐹)
21fvexi 6684 . . . 4 𝐼 ∈ V
32a1i 11 . . 3 (𝐹 ∈ V → 𝐼 ∈ V)
41ipobas 17765 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘𝐼))
5 eqidd 2822 . . 3 (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼))
6 ssid 3989 . . . 4 𝑎𝑎
7 eqid 2821 . . . . . 6 (le‘𝐼) = (le‘𝐼)
81, 7ipole 17768 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
983anidm23 1417 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
106, 9mpbiri 260 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹) → 𝑎(le‘𝐼)𝑎)
111, 7ipole 17768 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
121, 7ipole 17768 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
13123com23 1122 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
1411, 13anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) ↔ (𝑎𝑏𝑏𝑎)))
15 simpl 485 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑎𝑏)
16 simpr 487 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑏𝑎)
1715, 16eqssd 3984 . . . 4 ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏)
1814, 17syl6bi 255 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏))
19 sstr 3975 . . . . 5 ((𝑎𝑏𝑏𝑐) → 𝑎𝑐)
2019a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
21113adant3r3 1180 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
221, 7ipole 17768 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
23223adant3r1 1178 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
2421, 23anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) ↔ (𝑎𝑏𝑏𝑐)))
251, 7ipole 17768 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
26253adant3r2 1179 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
2720, 24, 263imtr4d 296 . . 3 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐))
283, 4, 5, 10, 18, 27isposd 17565 . 2 (𝐹 ∈ V → 𝐼 ∈ Poset)
29 fvprc 6663 . . . 4 𝐹 ∈ V → (toInc‘𝐹) = ∅)
301, 29syl5eq 2868 . . 3 𝐹 ∈ V → 𝐼 = ∅)
31 0pos 17564 . . 3 ∅ ∈ Poset
3230, 31eqeltrdi 2921 . 2 𝐹 ∈ V → 𝐼 ∈ Poset)
3328, 32pm2.61i 184 1 𝐼 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066  cfv 6355  lecple 16572  Posetcpo 17550  toInccipo 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-tset 16584  df-ple 16585  df-ocomp 16586  df-poset 17556  df-ipo 17762
This theorem is referenced by:  isipodrs  17771  mrelatglb  17794  mrelatglb0  17795  mrelatlub  17796  mreclatBAD  17797
  Copyright terms: Public domain W3C validator