MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipole Structured version   Visualization version   GIF version

Theorem ipole 17090
Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
ipole.l = (le‘𝐼)
Assertion
Ref Expression
ipole ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋𝑌))

Proof of Theorem ipole
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq12 4245 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
21sseq1d 3616 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ⊆ 𝐹 ↔ {𝑋, 𝑌} ⊆ 𝐹))
3 sseq12 3612 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑦𝑋𝑌))
42, 3anbi12d 746 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
5 eqid 2621 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
64, 5brabga 4954 . . 3 ((𝑋𝐹𝑌𝐹) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
763adant1 1077 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
8 ipoval.i . . . . . 6 𝐼 = (toInc‘𝐹)
98ipolerval 17088 . . . . 5 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
10 ipole.l . . . . 5 = (le‘𝐼)
119, 10syl6reqr 2674 . . . 4 (𝐹𝑉 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})
1211breqd 4629 . . 3 (𝐹𝑉 → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌))
13123ad2ant1 1080 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌))
14 prssi 4326 . . . 4 ((𝑋𝐹𝑌𝐹) → {𝑋, 𝑌} ⊆ 𝐹)
15143adant1 1077 . . 3 ((𝐹𝑉𝑋𝐹𝑌𝐹) → {𝑋, 𝑌} ⊆ 𝐹)
1615biantrurd 529 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
177, 13, 163bitr4d 300 1 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3559  {cpr 4155   class class class wbr 4618  {copab 4677  cfv 5852  lecple 15880  toInccipo 17083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-tset 15892  df-ple 15893  df-ocomp 15895  df-ipo 17084
This theorem is referenced by:  ipolt  17091  ipopos  17092  isipodrs  17093  ipodrsfi  17095  mrelatglb  17116  mrelatglb0  17117  mrelatlub  17118  thlleval  19974
  Copyright terms: Public domain W3C validator