MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmabs Structured version   Visualization version   GIF version

Theorem lcmabs 15949
Description: The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmabs ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))

Proof of Theorem lcmabs
StepHypRef Expression
1 zre 11986 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11986 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 absor 14660 . . . 4 (𝑀 ∈ ℝ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀))
4 absor 14660 . . . 4 (𝑁 ∈ ℝ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
53, 4anim12i 614 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
61, 2, 5syl2an 597 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
7 oveq12 7165 . . . 4 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
87a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
9 oveq12 7165 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (-𝑀 lcm 𝑁))
10 neglcm 15948 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm 𝑁) = (𝑀 lcm 𝑁))
119, 10sylan9eqr 2878 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
1211ex 415 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
13 oveq12 7165 . . . . 5 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm -𝑁))
14 lcmneg 15947 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
1513, 14sylan9eqr 2878 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
1615ex 415 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
17 oveq12 7165 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (-𝑀 lcm -𝑁))
18 znegcl 12018 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
19 lcmneg 15947 . . . . . . 7 ((-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (-𝑀 lcm 𝑁))
2018, 19sylan 582 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (-𝑀 lcm 𝑁))
2120, 10eqtrd 2856 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
2217, 21sylan9eqr 2878 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
2322ex 415 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
248, 12, 16, 23ccased 1033 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
256, 24mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cr 10536  -cneg 10871  cz 11982  abscabs 14593   lcm clcm 15932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-lcm 15934
This theorem is referenced by:  lcmgcd  15951  lcmdvds  15952  lcmgcdeq  15956
  Copyright terms: Public domain W3C validator