Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmgcd Structured version   Visualization version   GIF version

Theorem lcmgcd 15247
 Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which (𝑀 gcd 𝑁) = 1. Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic 1arith 15558 or of Bézout's identity bezout 15187; see e.g. https://proofwiki.org/wiki/Product_of_GCD_and_LCM and https://math.stackexchange.com/a/470827. This proof uses the latter to first confirm it for positive integer 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 15234 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 15155 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
21nn0cnd 11300 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
32mul02d 10181 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
4 0z 11335 . . . . . . . . . 10 0 ∈ ℤ
5 lcmcom 15233 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁))
64, 5mpan2 706 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁))
7 lcm0val 15234 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
86, 7eqtr3d 2657 . . . . . . . 8 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
98adantl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = 0)
109oveq1d 6622 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
11 zcn 11329 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantl 482 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1312mul02d 10181 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
1413abs00bd 13968 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(0 · 𝑁)) = 0)
153, 10, 143eqtr4d 2665 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
1615adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
17 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1817oveq1d 6622 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
1918oveq1d 6622 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((0 lcm 𝑁) · (𝑀 gcd 𝑁)))
2017oveq1d 6622 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = (0 · 𝑁))
2120fveq2d 6154 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(0 · 𝑁)))
2216, 19, 213eqtr4d 2665 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
23 lcm0val 15234 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2423adantr 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 0) = 0)
2524oveq1d 6622 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
26 zcn 11329 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2726adantr 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
2827mul01d 10182 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
2928abs00bd 13968 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 0)) = 0)
303, 25, 293eqtr4d 2665 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
3130adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
32 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
3332oveq2d 6623 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
3433oveq1d 6622 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 0) · (𝑀 gcd 𝑁)))
3532oveq2d 6623 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
3635fveq2d 6154 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑀 · 0)))
3731, 34, 363eqtr4d 2665 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
3822, 37jaodan 825 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
39 neanior 2882 . . . . 5 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
40 nnabscl 14002 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
41 nnabscl 14002 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
4240, 41anim12i 589 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4342an4s 868 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4439, 43sylan2br 493 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
45 lcmgcdlem 15246 . . . . 5 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ ((0 ∈ ℕ ∧ ((abs‘𝑀) ∥ 0 ∧ (abs‘𝑁) ∥ 0)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ 0)))
4645simpld 475 . . . 4 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
4744, 46syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
48 lcmabs 15245 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
49 gcdabs 15177 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
5048, 49oveq12d 6625 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
5150adantr 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
52 absidm 14000 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
53 absidm 14000 . . . . . . 7 (𝑁 ∈ ℂ → (abs‘(abs‘𝑁)) = (abs‘𝑁))
5452, 53oveqan12d 6626 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
5526, 11, 54syl2an 494 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
56 nn0abscl 13989 . . . . . . . 8 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
5756nn0cnd 11300 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
5857adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℂ)
59 nn0abscl 13989 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
6059nn0cnd 11300 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℂ)
6160adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑁) ∈ ℂ)
6258, 61absmuld 14130 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))))
6327, 12absmuld 14130 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
6455, 62, 633eqtr4d 2665 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6564adantr 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6647, 51, 653eqtr3d 2663 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
6738, 66pm2.61dan 831 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4615  ‘cfv 5849  (class class class)co 6607  ℂcc 9881  0cc0 9883   · cmul 9888  ℕcn 10967  ℤcz 11324  abscabs 13911   ∥ cdvds 14910   gcd cgcd 15143   lcm clcm 15228 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-dvds 14911  df-gcd 15144  df-lcm 15230 This theorem is referenced by:  lcmid  15249  lcm1  15250  lcmgcdnn  15251  nzprmdif  38021
 Copyright terms: Public domain W3C validator