Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Structured version   Visualization version   GIF version

Theorem ldual1dim 36317
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f 𝐹 = (LFnl‘𝑊)
ldual1dim.l 𝐿 = (LKer‘𝑊)
ldual1dim.d 𝐷 = (LDual‘𝑊)
ldual1dim.n 𝑁 = (LSpan‘𝐷)
ldual1dim.w (𝜑𝑊 ∈ LVec)
ldual1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldual1dim (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑔,𝑁   𝜑,𝑔
Allowed substitution hints:   𝐹(𝑔)   𝐿(𝑔)   𝑊(𝑔)

Proof of Theorem ldual1dim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2821 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 ldual1dim.d . . . . . . . 8 𝐷 = (LDual‘𝑊)
4 eqid 2821 . . . . . . . 8 (Scalar‘𝐷) = (Scalar‘𝐷)
5 eqid 2821 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
6 ldual1dim.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
71, 2, 3, 4, 5, 6ldualsbase 36284 . . . . . . 7 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
87eleq2d 2898 . . . . . 6 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
98anbi1d 631 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺))))
10 ldual1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
11 eqid 2821 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
12 eqid 2821 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
13 eqid 2821 . . . . . . . 8 ( ·𝑠𝐷) = ( ·𝑠𝐷)
146adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
15 simpr 487 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
16 ldual1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1716adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺𝐹)
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 36288 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝐷)𝐺) = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
1918eqeq2d 2832 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2019pm5.32da 581 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
219, 20bitrd 281 . . . 4 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
2221rexbidv2 3295 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2322abbidv 2885 . 2 (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
24 lveclmod 19878 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
253, 24lduallmod 36304 . . . 4 (𝑊 ∈ LVec → 𝐷 ∈ LMod)
266, 25syl 17 . . 3 (𝜑𝐷 ∈ LMod)
27 eqid 2821 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2810, 3, 27, 6, 16ldualelvbase 36278 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
29 ldual1dim.n . . . 4 𝑁 = (LSpan‘𝐷)
304, 5, 27, 13, 29lspsn 19774 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
3126, 28, 30syl2anc 586 . 2 (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
32 ldual1dim.l . . 3 𝐿 = (LKer‘𝑊)
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 36272 . 2 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
3423, 31, 333eqtr4d 2866 1 (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  {crab 3142  wss 3936  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  Basecbs 16483  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  LModclmod 19634  LSpanclspn 19743  LVecclvec 19874  LFnlclfn 36208  LKerclk 36236  LDualcld 36274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-lshyp 36128  df-lfl 36209  df-lkr 36237  df-ldual 36275
This theorem is referenced by:  mapdsn3  38794
  Copyright terms: Public domain W3C validator