![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version |
Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopuni.1 | ⊢ 𝑇 ∈ LinOp |
lnopuni.2 | ⊢ 𝑇: ℋ–onto→ ℋ |
lnopuni.3 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
Ref | Expression |
---|---|
lnopunii | ⊢ 𝑇 ∈ UniOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopuni.2 | . 2 ⊢ 𝑇: ℋ–onto→ ℋ | |
2 | fveq2 6304 | . . . . . 6 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑇‘𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
3 | 2 | oveq1d 6780 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦))) |
4 | oveq1 6772 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦)) | |
5 | 3, 4 | eqeq12d 2739 | . . . 4 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦))) |
6 | fveq2 6304 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
7 | 6 | oveq2d 6781 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
8 | oveq2 6773 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
9 | 7, 8 | eqeq12d 2739 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
10 | lnopuni.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
11 | lnopuni.3 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
12 | ifhvhv0 28109 | . . . . 5 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
13 | ifhvhv0 28109 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
14 | 10, 11, 12, 13 | lnopunilem2 29100 | . . . 4 ⊢ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) |
15 | 5, 9, 14 | dedth2h 4248 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
16 | 15 | rgen2a 3079 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) |
17 | elunop 28961 | . 2 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
18 | 1, 16, 17 | mpbir2an 993 | 1 ⊢ 𝑇 ∈ UniOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∈ wcel 2103 ∀wral 3014 ifcif 4194 –onto→wfo 5999 ‘cfv 6001 (class class class)co 6765 ℋchil 28006 ·ih csp 28009 normℎcno 28010 0ℎc0v 28011 LinOpclo 28034 UniOpcuo 28036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-hilex 28086 ax-hfvadd 28087 ax-hv0cl 28090 ax-hfvmul 28092 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his2 28170 ax-his3 28171 ax-his4 28172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-hnorm 28055 df-lnop 28930 df-unop 28932 |
This theorem is referenced by: elunop2 29102 |
Copyright terms: Public domain | W3C validator |