Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendassa Structured version   Visualization version   GIF version

Theorem mendassa 37242
Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
mendassa.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendassa ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)

Proof of Theorem mendassa
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 37232 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 mendassa.s . . . 4 𝑆 = (Scalar‘𝑀)
51, 4mendsca 37237 . . 3 𝑆 = (Scalar‘𝐴)
65a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 = (Scalar‘𝐴))
7 eqidd 2622 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (Base‘𝑆) = (Base‘𝑆))
8 eqidd 2622 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
9 eqidd 2622 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (.r𝐴) = (.r𝐴))
101, 4mendlmod 37241 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
111mendring 37240 . . 3 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
1211adantr 481 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Ring)
13 simpr 477 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 ∈ CRing)
14 simpr3 1067 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
15 eqid 2621 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1615, 15lmhmf 18953 . . . . . . 7 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1714, 16syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1817ffvelrnda 6315 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ (Base‘𝑀))
1917feqmptd 6206 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 = (𝑣 ∈ (Base‘𝑀) ↦ (𝑧𝑣)))
20 simpr1 1065 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
21 simpr2 1066 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
22 eqid 2621 . . . . . . . 8 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2621 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
24 eqid 2621 . . . . . . . 8 ( ·𝑠𝐴) = ( ·𝑠𝐴)
251, 22, 2, 4, 23, 15, 24mendvsca 37239 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
2620, 21, 25syl2anc 692 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
27 fvex 6158 . . . . . . . 8 (Base‘𝑀) ∈ V
2827a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
29 simplr1 1101 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
30 fvex 6158 . . . . . . . 8 (𝑦𝑤) ∈ V
3130a1i 11 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → (𝑦𝑤) ∈ V)
32 fconstmpt 5123 . . . . . . . 8 ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥)
3332a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥))
3415, 15lmhmf 18953 . . . . . . . . 9 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3521, 34syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3635feqmptd 6206 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 = (𝑤 ∈ (Base‘𝑀) ↦ (𝑦𝑤)))
3728, 29, 31, 33, 36offval2 6867 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
3826, 37eqtrd 2655 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
39 fveq2 6148 . . . . . 6 (𝑤 = (𝑧𝑣) → (𝑦𝑤) = (𝑦‘(𝑧𝑣)))
4039oveq2d 6620 . . . . 5 (𝑤 = (𝑧𝑣) → (𝑥( ·𝑠𝑀)(𝑦𝑤)) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
4118, 19, 38, 40fmptco 6351 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
42 simplr1 1101 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
43 fvex 6158 . . . . . 6 (𝑦‘(𝑧𝑣)) ∈ V
4443a1i 11 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑧𝑣)) ∈ V)
45 fconstmpt 5123 . . . . . 6 ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥)
4645a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥))
47 eqid 2621 . . . . . . . 8 (.r𝐴) = (.r𝐴)
481, 2, 47mendmulr 37236 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
4921, 14, 48syl2anc 692 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
50 fcompt 6354 . . . . . . 7 ((𝑦:(Base‘𝑀)⟶(Base‘𝑀) ∧ 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5135, 17, 50syl2anc 692 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5249, 51eqtrd 2655 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5328, 42, 44, 46, 52offval2 6867 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
5441, 53eqtr4d 2658 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
5510adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ LMod)
562, 5, 24, 23lmodvscl 18801 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
5755, 20, 21, 56syl3anc 1323 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
581, 2, 47mendmulr 37236 . . . 4 (((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
5957, 14, 58syl2anc 692 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
6012adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ Ring)
612, 47ringcl 18482 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
6260, 21, 14, 61syl3anc 1323 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
631, 22, 2, 4, 23, 15, 24mendvsca 37239 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6420, 62, 63syl2anc 692 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6554, 59, 643eqtr4d 2665 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
66 simplr2 1102 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑦 ∈ (𝑀 LMHom 𝑀))
674, 23, 15, 22, 22lmhmlin 18954 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6866, 42, 18, 67syl3anc 1323 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6968mpteq2dva 4704 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
70 simplll 797 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑀 ∈ LMod)
7115, 4, 22, 23lmodvscl 18801 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
7270, 42, 18, 71syl3anc 1323 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
731, 22, 2, 4, 23, 15, 24mendvsca 37239 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
7420, 14, 73syl2anc 692 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
75 fvex 6158 . . . . . . . 8 (𝑧𝑣) ∈ V
7675a1i 11 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ V)
7728, 42, 76, 46, 19offval2 6867 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
7874, 77eqtrd 2655 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
79 fveq2 6148 . . . . 5 (𝑤 = (𝑥( ·𝑠𝑀)(𝑧𝑣)) → (𝑦𝑤) = (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))))
8072, 78, 36, 79fmptco 6351 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))))
8169, 80, 533eqtr4d 2665 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
822, 5, 24, 23lmodvscl 18801 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
8355, 20, 14, 82syl3anc 1323 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
841, 2, 47mendmulr 37236 . . . 4 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8521, 83, 84syl2anc 692 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8681, 85, 643eqtr4d 2665 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
873, 6, 7, 8, 9, 10, 12, 13, 65, 86isassad 19242 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  {csn 4148  cmpt 4673   × cxp 5072  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  Basecbs 15781  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  Ringcrg 18468  CRingccrg 18469  LModclmod 18784   LMHom clmhm 18938  AssAlgcasa 19228  MEndocmend 37223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-ghm 17579  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-lmod 18786  df-lmhm 18941  df-assa 19231  df-mend 37224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator