Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Structured version   Visualization version   GIF version

Theorem idomrootle 36689
Description: No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b 𝐵 = (Base‘𝑅)
idomrootle.e = (.g‘(mulGrp‘𝑅))
Assertion
Ref Expression
idomrootle ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (#‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}) ≤ 𝑁)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑁   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   (𝑦)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2514 . . 3 (Poly1𝑅) = (Poly1𝑅)
2 eqid 2514 . . 3 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
3 eqid 2514 . . 3 ( deg1𝑅) = ( deg1𝑅)
4 eqid 2514 . . 3 (eval1𝑅) = (eval1𝑅)
5 eqid 2514 . . 3 (0g𝑅) = (0g𝑅)
6 eqid 2514 . . 3 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
7 simp1 1053 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ IDomn)
8 isidom 19029 . . . . . . . . 9 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 474 . . . . . . . 8 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
107, 9syl 17 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ CRing)
11 crngring 18288 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ Ring)
131ply1ring 19343 . . . . . 6 (𝑅 ∈ Ring → (Poly1𝑅) ∈ Ring)
1412, 13syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (Poly1𝑅) ∈ Ring)
15 ringgrp 18282 . . . . 5 ((Poly1𝑅) ∈ Ring → (Poly1𝑅) ∈ Grp)
1614, 15syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (Poly1𝑅) ∈ Grp)
17 eqid 2514 . . . . . . . 8 (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1𝑅))
1817ringmgp 18283 . . . . . . 7 ((Poly1𝑅) ∈ Ring → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
20 mndmgm 17015 . . . . . 6 ((mulGrp‘(Poly1𝑅)) ∈ Mnd → (mulGrp‘(Poly1𝑅)) ∈ Mgm)
2119, 20syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘(Poly1𝑅)) ∈ Mgm)
22 simp3 1055 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
23 eqid 2514 . . . . . . 7 (var1𝑅) = (var1𝑅)
2423, 1, 2vr1cl 19312 . . . . . 6 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2512, 24syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2617, 2mgpbas 18225 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(mulGrp‘(Poly1𝑅)))
27 eqid 2514 . . . . . 6 (.g‘(mulGrp‘(Poly1𝑅))) = (.g‘(mulGrp‘(Poly1𝑅)))
2826, 27mulgnncl 17271 . . . . 5 (((mulGrp‘(Poly1𝑅)) ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ (var1𝑅) ∈ (Base‘(Poly1𝑅))) → (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)))
2921, 22, 25, 28syl3anc 1317 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)))
30 eqid 2514 . . . . . . 7 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
31 idomrootle.b . . . . . . 7 𝐵 = (Base‘𝑅)
321, 30, 31, 2ply1sclf 19380 . . . . . 6 (𝑅 ∈ Ring → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
3312, 32syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
34 simp2 1054 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑋𝐵)
3533, 34ffvelrnd 6152 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
36 eqid 2514 . . . . 5 (-g‘(Poly1𝑅)) = (-g‘(Poly1𝑅))
372, 36grpsubcl 17210 . . . 4 (((Poly1𝑅) ∈ Grp ∧ (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)) ∧ ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅))) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)))
3816, 29, 35, 37syl3anc 1317 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)))
393, 1, 2deg1xrcl 23521 . . . . . . . . . 10 (((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ℝ*)
4035, 39syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ℝ*)
41 0xr 9841 . . . . . . . . . 10 0 ∈ ℝ*
4241a1i 11 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 0 ∈ ℝ*)
43 nnre 10782 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
4443rexrd 9844 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*)
45443ad2ant3 1076 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℝ*)
463, 1, 31, 30deg1sclle 23551 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ≤ 0)
4712, 34, 46syl2anc 690 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ≤ 0)
48 nngt0 10804 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
49483ad2ant3 1076 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 0 < 𝑁)
5040, 42, 45, 47, 49xrlelttrd 11736 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) < 𝑁)
518simprbi 478 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
52 domnnzr 19020 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
5351, 52syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
547, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ NzRing)
55 nnnn0 11054 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
56553ad2ant3 1076 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
573, 1, 23, 17, 27deg1pw 23559 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝑁 ∈ ℕ0) → (( deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))) = 𝑁)
5854, 56, 57syl2anc 690 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))) = 𝑁)
5950, 58breqtrrd 4509 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) < (( deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))))
601, 3, 12, 2, 36, 29, 35, 59deg1sub 23547 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) = (( deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))))
6160, 58eqtrd 2548 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) = 𝑁)
6261, 56eqeltrd 2592 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0)
633, 1, 6, 2deg1nn0clb 23529 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅))) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)) ↔ (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0))
6412, 38, 63syl2anc 690 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)) ↔ (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0))
6562, 64mpbird 245 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)))
661, 2, 3, 4, 5, 6, 7, 38, 65fta1g 23608 . 2 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (#‘(((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)})) ≤ (( deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))))
67 eqid 2514 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
68 eqid 2514 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
69 fvex 5997 . . . . . . . . 9 (Base‘𝑅) ∈ V
7031, 69eqeltri 2588 . . . . . . . 8 𝐵 ∈ V
7170a1i 11 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝐵 ∈ V)
724, 1, 67, 31evl1rhm 19421 . . . . . . . . . 10 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
7310, 72syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
742, 68rhmf 18456 . . . . . . . . 9 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7573, 74syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7675, 38ffvelrnd 6152 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ (Base‘(𝑅s 𝐵)))
7767, 31, 68, 7, 71, 76pwselbas 15856 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))):𝐵𝐵)
78 ffn 5843 . . . . . 6 (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))):𝐵𝐵 → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) Fn 𝐵)
7977, 78syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) Fn 𝐵)
80 fniniseg2 6132 . . . . 5 (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) Fn 𝐵 → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)})
8179, 80syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)})
8210adantr 479 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑅 ∈ CRing)
83 simpr 475 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦𝐵)
844, 23, 31, 1, 2, 82, 83evl1vard 19426 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((var1𝑅) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘(var1𝑅))‘𝑦) = 𝑦))
85 idomrootle.e . . . . . . . . . 10 = (.g‘(mulGrp‘𝑅))
86 simpl3 1058 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑁 ∈ ℕ)
8786, 55syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑁 ∈ ℕ0)
884, 1, 31, 2, 82, 83, 84, 27, 85, 87evl1expd 19434 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)))‘𝑦) = (𝑁 𝑦)))
89 simpl2 1057 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑋𝐵)
904, 1, 31, 30, 2, 82, 89, 83evl1scad 19424 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋))‘𝑦) = 𝑋))
91 eqid 2514 . . . . . . . . 9 (-g𝑅) = (-g𝑅)
924, 1, 31, 2, 82, 83, 88, 90, 36, 91evl1subd 19431 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = ((𝑁 𝑦)(-g𝑅)𝑋)))
9392simprd 477 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = ((𝑁 𝑦)(-g𝑅)𝑋))
9493eqeq1d 2516 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅) ↔ ((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅)))
95 ringgrp 18282 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9612, 95syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ Grp)
9796adantr 479 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑅 ∈ Grp)
98 eqid 2514 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
9998ringmgp 18283 . . . . . . . . . . 11 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
10012, 99syl 17 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘𝑅) ∈ Mnd)
101100adantr 479 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (mulGrp‘𝑅) ∈ Mnd)
102 mndmgm 17015 . . . . . . . . 9 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
103101, 102syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (mulGrp‘𝑅) ∈ Mgm)
10498, 31mgpbas 18225 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑅))
105104, 85mulgnncl 17271 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑦𝐵) → (𝑁 𝑦) ∈ 𝐵)
106103, 86, 83, 105syl3anc 1317 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (𝑁 𝑦) ∈ 𝐵)
10731, 5, 91grpsubeq0 17216 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑁 𝑦) ∈ 𝐵𝑋𝐵) → (((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
10897, 106, 89, 107syl3anc 1317 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
10994, 108bitrd 266 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
110109rabbidva 3067 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)} = {𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋})
11181, 110eqtrd 2548 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋})
112111fveq2d 5991 . 2 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (#‘(((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)})) = (#‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}))
11366, 112, 613brtr3d 4512 1 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (#‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  wne 2684  {crab 2804  Vcvv 3077  {csn 4028   class class class wbr 4481  ccnv 4931  cima 4935   Fn wfn 5684  wf 5685  cfv 5689  (class class class)co 6426  0cc0 9691  *cxr 9828   < clt 9829  cle 9830  cn 10775  0cn0 11047  #chash 12847  Basecbs 15579  0gc0g 15807  s cpws 15814  Mgmcmgm 16955  Mndcmnd 17009  Grpcgrp 17137  -gcsg 17139  .gcmg 17255  mulGrpcmgp 18219  Ringcrg 18277  CRingccrg 18278   RingHom crh 18442  NzRingcnzr 18982  Domncdomn 19005  IDomncidom 19006  algSccascl 19036  var1cv1 19271  Poly1cpl1 19272  eval1ce1 19404   deg1 cdg1 23493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-of 6671  df-ofr 6672  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-tpos 7114  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-2o 7324  df-oadd 7327  df-er 7505  df-map 7622  df-pm 7623  df-ixp 7671  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-sup 8107  df-oi 8174  df-card 8524  df-cda 8749  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-fz 12066  df-fzo 12203  df-seq 12532  df-hash 12848  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-sca 15668  df-vsca 15669  df-ip 15670  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-hom 15677  df-cco 15678  df-0g 15809  df-gsum 15810  df-prds 15815  df-pws 15817  df-mre 15961  df-mrc 15962  df-acs 15964  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-mhm 17050  df-submnd 17051  df-grp 17140  df-minusg 17141  df-sbg 17142  df-mulg 17256  df-subg 17306  df-ghm 17373  df-cntz 17465  df-cmn 17926  df-abl 17927  df-mgp 18220  df-ur 18232  df-srg 18236  df-ring 18279  df-cring 18280  df-oppr 18353  df-dvdsr 18371  df-unit 18372  df-invr 18402  df-rnghom 18445  df-subrg 18508  df-lmod 18595  df-lss 18658  df-lsp 18697  df-nzr 18983  df-rlreg 19008  df-domn 19009  df-idom 19010  df-assa 19037  df-asp 19038  df-ascl 19039  df-psr 19081  df-mvr 19082  df-mpl 19083  df-opsr 19085  df-evls 19231  df-evl 19232  df-psr1 19275  df-vr1 19276  df-ply1 19277  df-coe1 19278  df-evl1 19406  df-cnfld 19472  df-mdeg 23494  df-deg1 23495  df-mon1 23570  df-uc1p 23571  df-q1p 23572  df-r1p 23573
This theorem is referenced by:  idomodle  36690
  Copyright terms: Public domain W3C validator