Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvrs Structured version   Visualization version   GIF version

Theorem mrsubvrs 31127
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
mrsubvrs.v 𝑉 = (mVR‘𝑇)
mrsubvrs.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubvrs ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem mrsubvrs
Dummy variables 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3896 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubco.s . . . . . . . . 9 𝑆 = (mRSubst‘𝑇)
3 fvprc 6142 . . . . . . . . 9 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
42, 3syl5eq 2667 . . . . . . . 8 𝑇 ∈ V → 𝑆 = ∅)
54rneqd 5313 . . . . . . 7 𝑇 ∈ V → ran 𝑆 = ran ∅)
6 rn0 5337 . . . . . . 7 ran ∅ = ∅
75, 6syl6eq 2671 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
81, 7nsyl2 142 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
9 eqid 2621 . . . . . 6 (mCN‘𝑇) = (mCN‘𝑇)
10 mrsubvrs.v . . . . . 6 𝑉 = (mVR‘𝑇)
11 mrsubvrs.r . . . . . 6 𝑅 = (mREx‘𝑇)
129, 10, 11mrexval 31106 . . . . 5 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12syl 17 . . . 4 (𝐹 ∈ ran 𝑆𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1413eleq2d 2684 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋𝑅𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉)))
15 fveq2 6148 . . . . . . . . 9 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
1615rneqd 5313 . . . . . . . 8 (𝑣 = ∅ → ran (𝐹𝑣) = ran (𝐹‘∅))
1716ineq1d 3791 . . . . . . 7 (𝑣 = ∅ → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘∅) ∩ 𝑉))
18 rneq 5311 . . . . . . . . . . . 12 (𝑣 = ∅ → ran 𝑣 = ran ∅)
1918, 6syl6eq 2671 . . . . . . . . . . 11 (𝑣 = ∅ → ran 𝑣 = ∅)
2019ineq1d 3791 . . . . . . . . . 10 (𝑣 = ∅ → (ran 𝑣𝑉) = (∅ ∩ 𝑉))
21 0in 3941 . . . . . . . . . 10 (∅ ∩ 𝑉) = ∅
2220, 21syl6eq 2671 . . . . . . . . 9 (𝑣 = ∅ → (ran 𝑣𝑉) = ∅)
2322iuneq1d 4511 . . . . . . . 8 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
24 0iun 4543 . . . . . . . 8 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅
2523, 24syl6eq 2671 . . . . . . 7 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅)
2617, 25eqeq12d 2636 . . . . . 6 (𝑣 = ∅ → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘∅) ∩ 𝑉) = ∅))
2726imbi2d 330 . . . . 5 (𝑣 = ∅ → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)))
28 fveq2 6148 . . . . . . . . 9 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
2928rneqd 5313 . . . . . . . 8 (𝑣 = 𝑦 → ran (𝐹𝑣) = ran (𝐹𝑦))
3029ineq1d 3791 . . . . . . 7 (𝑣 = 𝑦 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑦) ∩ 𝑉))
31 rneq 5311 . . . . . . . . 9 (𝑣 = 𝑦 → ran 𝑣 = ran 𝑦)
3231ineq1d 3791 . . . . . . . 8 (𝑣 = 𝑦 → (ran 𝑣𝑉) = (ran 𝑦𝑉))
3332iuneq1d 4511 . . . . . . 7 (𝑣 = 𝑦 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3430, 33eqeq12d 2636 . . . . . 6 (𝑣 = 𝑦 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
3534imbi2d 330 . . . . 5 (𝑣 = 𝑦 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
36 fveq2 6148 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (𝐹𝑣) = (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3736rneqd 5313 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran (𝐹𝑣) = ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3837ineq1d 3791 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉))
39 rneq 5311 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran 𝑣 = ran (𝑦 ++ ⟨“𝑧”⟩))
4039ineq1d 3791 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran 𝑣𝑉) = (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉))
4140iuneq1d 4511 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
4238, 41eqeq12d 2636 . . . . . 6 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4342imbi2d 330 . . . . 5 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
44 fveq2 6148 . . . . . . . . 9 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
4544rneqd 5313 . . . . . . . 8 (𝑣 = 𝑋 → ran (𝐹𝑣) = ran (𝐹𝑋))
4645ineq1d 3791 . . . . . . 7 (𝑣 = 𝑋 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑋) ∩ 𝑉))
47 rneq 5311 . . . . . . . . 9 (𝑣 = 𝑋 → ran 𝑣 = ran 𝑋)
4847ineq1d 3791 . . . . . . . 8 (𝑣 = 𝑋 → (ran 𝑣𝑉) = (ran 𝑋𝑉))
4948iuneq1d 4511 . . . . . . 7 (𝑣 = 𝑋 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
5046, 49eqeq12d 2636 . . . . . 6 (𝑣 = 𝑋 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
5150imbi2d 330 . . . . 5 (𝑣 = 𝑋 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
522mrsub0 31121 . . . . . . . . 9 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
5352rneqd 5313 . . . . . . . 8 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ran ∅)
5453, 6syl6eq 2671 . . . . . . 7 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ∅)
5554ineq1d 3791 . . . . . 6 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = (∅ ∩ 𝑉))
5655, 21syl6eq 2671 . . . . 5 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)
57 uneq1 3738 . . . . . . . 8 ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
58 simpl 473 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹 ∈ ran 𝑆)
59 simprl 793 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6013adantr 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
6159, 60eleqtrrd 2701 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦𝑅)
62 simprr 795 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))
6362s1cld 13322 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6463, 60eleqtrrd 2701 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ 𝑅)
652, 11mrsubccat 31123 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆𝑦𝑅 ∧ ⟨“𝑧”⟩ ∈ 𝑅) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6658, 61, 64, 65syl3anc 1323 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6766rneqd 5313 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
682, 11mrsubf 31122 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
6968adantr 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹:𝑅𝑅)
7069, 61ffvelrnd 6316 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ 𝑅)
7170, 60eleqtrd 2700 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
7269, 64ffvelrnd 6316 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ 𝑅)
7372, 60eleqtrd 2700 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
74 ccatrn 13311 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7571, 73, 74syl2anc 692 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7667, 75eqtrd 2655 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7776ineq1d 3791 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉))
78 indir 3851 . . . . . . . . . 10 ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
7977, 78syl6eq 2671 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
80 ccatrn 13311 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
8159, 63, 80syl2anc 692 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
82 s1rn 13318 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
8382ad2antll 764 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ⟨“𝑧”⟩ = {𝑧})
8483uneq2d 3745 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran 𝑦 ∪ ran ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8581, 84eqtrd 2655 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8685ineq1d 3791 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉))
87 indir 3851 . . . . . . . . . . . . 13 ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))
8886, 87syl6eq 2671 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉)))
8988iuneq1d 4511 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
90 iunxun 4571 . . . . . . . . . . 11 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
9189, 90syl6eq 2671 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
92 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑧𝑉)
9392snssd 4309 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → {𝑧} ⊆ 𝑉)
94 df-ss 3569 . . . . . . . . . . . . . . 15 ({𝑧} ⊆ 𝑉 ↔ ({𝑧} ∩ 𝑉) = {𝑧})
9593, 94sylib 208 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = {𝑧})
9695iuneq1d 4511 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
97 vex 3189 . . . . . . . . . . . . . 14 𝑧 ∈ V
98 s1eq 13319 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ⟨“𝑥”⟩ = ⟨“𝑧”⟩)
9998fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹‘⟨“𝑥”⟩) = (𝐹‘⟨“𝑧”⟩))
10099rneqd 5313 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ran (𝐹‘⟨“𝑥”⟩) = ran (𝐹‘⟨“𝑧”⟩))
101100ineq1d 3791 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
10297, 101iunxsn 4569 . . . . . . . . . . . . 13 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)
10396, 102syl6eq 2671 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
104 incom 3783 . . . . . . . . . . . . . . 15 ({𝑧} ∩ 𝑉) = (𝑉 ∩ {𝑧})
105 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ¬ 𝑧𝑉)
106 disjsn 4216 . . . . . . . . . . . . . . . 16 ((𝑉 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑉)
107105, 106sylibr 224 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝑉 ∩ {𝑧}) = ∅)
108104, 107syl5eq 2667 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = ∅)
109108iuneq1d 4511 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
11058adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝐹 ∈ ran 𝑆)
111 eldif 3565 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) ↔ (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉))
112111biimpri 218 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
11362, 112sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
114 difun2 4020 . . . . . . . . . . . . . . . . . . 19 (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) = ((mCN‘𝑇) ∖ 𝑉)
115113, 114syl6eleq 2708 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉))
1162, 11, 10, 9mrsubcn 31124 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ran 𝑆𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉)) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
117110, 115, 116syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
118117rneqd 5313 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = ran ⟨“𝑧”⟩)
11983adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
120118, 119eqtrd 2655 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = {𝑧})
121120ineq1d 3791 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ({𝑧} ∩ 𝑉))
122121, 108eqtrd 2655 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ∅)
12324, 109, 1223eqtr4a 2681 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
124103, 123pm2.61dan 831 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
125124uneq2d 3745 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12691, 125eqtrd 2655 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12779, 126eqeq12d 2636 . . . . . . . 8 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))))
12857, 127syl5ibr 236 . . . . . . 7 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
129128expcom 451 . . . . . 6 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → (𝐹 ∈ ran 𝑆 → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
130129a2d 29 . . . . 5 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) → (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
13127, 35, 43, 51, 56, 130wrdind 13414 . . . 4 (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
132131com12 32 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
13314, 132sylbid 230 . 2 (𝐹 ∈ ran 𝑆 → (𝑋𝑅 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
134133imp 445 1 ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cdif 3552  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148   ciun 4485  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  Word cword 13230   ++ cconcat 13232  ⟨“cs1 13233  mCNcmcn 31065  mVRcmvar 31066  mRExcmrex 31071  mRSubstcmrsub 31075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-frmd 17307  df-mrex 31091  df-mrsub 31095
This theorem is referenced by:  msubvrs  31165
  Copyright terms: Public domain W3C validator