Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubccat Structured version   Visualization version   GIF version

Theorem mrsubccat 31541
 Description: Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubccat ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))

Proof of Theorem mrsubccat
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3953 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . . . . . . 9 𝑆 = (mRSubst‘𝑇)
3 fvprc 6223 . . . . . . . . 9 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
42, 3syl5eq 2697 . . . . . . . 8 𝑇 ∈ V → 𝑆 = ∅)
54rneqd 5385 . . . . . . 7 𝑇 ∈ V → ran 𝑆 = ran ∅)
6 rn0 5409 . . . . . . 7 ran ∅ = ∅
75, 6syl6eq 2701 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
81, 7nsyl2 142 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
9 eqid 2651 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
10 mrsubccat.r . . . . . 6 𝑅 = (mREx‘𝑇)
119, 10, 2mrsubff 31535 . . . . 5 (𝑇 ∈ V → 𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅𝑚 𝑅))
12 ffun 6086 . . . . 5 (𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅𝑚 𝑅) → Fun 𝑆)
138, 11, 123syl 18 . . . 4 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
149, 10, 2mrsubrn 31536 . . . . . 6 ran 𝑆 = (𝑆 “ (𝑅𝑚 (mVR‘𝑇)))
1514eleq2i 2722 . . . . 5 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅𝑚 (mVR‘𝑇))))
1615biimpi 206 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅𝑚 (mVR‘𝑇))))
17 fvelima 6287 . . . 4 ((Fun 𝑆𝐹 ∈ (𝑆 “ (𝑅𝑚 (mVR‘𝑇)))) → ∃𝑓 ∈ (𝑅𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹)
1813, 16, 17syl2anc 694 . . 3 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹)
19 simprl 809 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋𝑅)
20 elfvex 6259 . . . . . . . . . . . . . 14 (𝑋 ∈ (mREx‘𝑇) → 𝑇 ∈ V)
2120, 10eleq2s 2748 . . . . . . . . . . . . 13 (𝑋𝑅𝑇 ∈ V)
22 eqid 2651 . . . . . . . . . . . . . 14 (mCN‘𝑇) = (mCN‘𝑇)
2322, 9, 10mrexval 31524 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2419, 21, 233syl 18 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2519, 24eleqtrd 2732 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
26 simprr 811 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌𝑅)
2726, 24eleqtrd 2732 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
28 elmapi 7921 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2928adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑓:(mVR‘𝑇)⟶𝑅)
3029adantr 480 . . . . . . . . . . . . . . 15 (((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶𝑅)
3130ffvelrnda 6399 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ 𝑅)
3224ad2antrr 762 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3331, 32eleqtrd 2732 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
34 simplr 807 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3534s1cld 13419 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3633, 35ifclda 4153 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
37 eqid 2651 . . . . . . . . . . . 12 (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩))
3836, 37fmptd 6425 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
39 ccatco 13627 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
4025, 27, 38, 39syl3anc 1366 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
4140oveq2d 6706 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
42 fvex 6239 . . . . . . . . . . . 12 (mCN‘𝑇) ∈ V
43 fvex 6239 . . . . . . . . . . . 12 (mVR‘𝑇) ∈ V
4442, 43unex 6998 . . . . . . . . . . 11 ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V
45 eqid 2651 . . . . . . . . . . . 12 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
4645frmdmnd 17443 . . . . . . . . . . 11 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
4744, 46mp1i 13 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
48 wrdco 13623 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4925, 38, 48syl2anc 694 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
50 wrdco 13623 . . . . . . . . . . 11 ((𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5127, 38, 50syl2anc 694 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
52 eqid 2651 . . . . . . . . . . . . . 14 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
5345, 52frmdbas 17436 . . . . . . . . . . . . 13 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5444, 53ax-mp 5 . . . . . . . . . . . 12 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
5554eqcomi 2660 . . . . . . . . . . 11 Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
56 eqid 2651 . . . . . . . . . . 11 (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
5755, 56gsumccat 17425 . . . . . . . . . 10 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5847, 49, 51, 57syl3anc 1366 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5955gsumwcl 17424 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6047, 49, 59syl2anc 694 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6155gsumwcl 17424 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6247, 51, 61syl2anc 694 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6345, 55, 56frmdadd 17439 . . . . . . . . . 10 ((((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
6460, 62, 63syl2anc 694 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
6541, 58, 643eqtrd 2689 . . . . . . . 8 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
66 ssid 3657 . . . . . . . . . 10 (mVR‘𝑇) ⊆ (mVR‘𝑇)
6766a1i 11 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
68 ccatcl 13392 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6925, 27, 68syl2anc 694 . . . . . . . . . 10 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
7069, 24eleqtrrd 2733 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ 𝑅)
7122, 9, 10, 2, 45mrsubval 31532 . . . . . . . . 9 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ (𝑋 ++ 𝑌) ∈ 𝑅) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
7229, 67, 70, 71syl3anc 1366 . . . . . . . 8 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
7322, 9, 10, 2, 45mrsubval 31532 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑋𝑅) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
7429, 67, 19, 73syl3anc 1366 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
7522, 9, 10, 2, 45mrsubval 31532 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑌𝑅) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7629, 67, 26, 75syl3anc 1366 . . . . . . . . 9 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7774, 76oveq12d 6708 . . . . . . . 8 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
7865, 72, 773eqtr4d 2695 . . . . . . 7 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)))
79 fveq1 6228 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (𝐹‘(𝑋 ++ 𝑌)))
80 fveq1 6228 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑋) = (𝐹𝑋))
81 fveq1 6228 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑌) = (𝐹𝑌))
8280, 81oveq12d 6708 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
8379, 82eqeq12d 2666 . . . . . . 7 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) ↔ (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8478, 83syl5ibcom 235 . . . . . 6 ((𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8584ex 449 . . . . 5 (𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) → ((𝑋𝑅𝑌𝑅) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8685com23 86 . . . 4 (𝑓 ∈ (𝑅𝑚 (mVR‘𝑇)) → ((𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8786rexlimiv 3056 . . 3 (∃𝑓 ∈ (𝑅𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8818, 87syl 17 . 2 (𝐹 ∈ ran 𝑆 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
89883impib 1281 1 ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  Vcvv 3231   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  ifcif 4119   ↦ cmpt 4762  ran crn 5144   “ cima 5146   ∘ ccom 5147  Fun wfun 5920  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899   ↑pm cpm 7900  Word cword 13323   ++ cconcat 13325  ⟨“cs1 13326  Basecbs 15904  +gcplusg 15988   Σg cgsu 16148  Mndcmnd 17341  freeMndcfrmd 17431  mCNcmcn 31483  mVRcmvar 31484  mRExcmrex 31489  mRSubstcmrsub 31493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-frmd 17433  df-mrex 31509  df-mrsub 31513 This theorem is referenced by:  elmrsubrn  31543  mrsubco  31544  mrsubvrs  31545
 Copyright terms: Public domain W3C validator