Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubvrs Structured version   Visualization version   GIF version

Theorem msubvrs 31157
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubvrs.s 𝑆 = (mSubst‘𝑇)
msubvrs.e 𝐸 = (mEx‘𝑇)
msubvrs.v 𝑉 = (mVars‘𝑇)
msubvrs.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
msubvrs ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝑥,𝑉
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem msubvrs
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubvrs.e . . . . . 6 𝐸 = (mEx‘𝑇)
2 eqid 2626 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubvrs.s . . . . . 6 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 31125 . . . . 5 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
54eleq2i 2696 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
6 eqid 2626 . . . . 5 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
7 fvex 6160 . . . . . . 7 (mEx‘𝑇) ∈ V
81, 7eqeltri 2700 . . . . . 6 𝐸 ∈ V
98mptex 6441 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) ∈ V
106, 9elrnmpti 5340 . . . 4 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
115, 10bitri 264 . . 3 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
12 simp2 1060 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓 ∈ ran (mRSubst‘𝑇))
13 simp3 1061 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋𝐸)
14 eqid 2626 . . . . . . . . . . . 12 (mTC‘𝑇) = (mTC‘𝑇)
15 eqid 2626 . . . . . . . . . . . 12 (mREx‘𝑇) = (mREx‘𝑇)
1614, 1, 15mexval 31099 . . . . . . . . . . 11 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇))
1713, 16syl6eleq 2714 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
18 xp2nd 7147 . . . . . . . . . 10 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑋) ∈ (mREx‘𝑇))
1917, 18syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
20 eqid 2626 . . . . . . . . . 10 (mVR‘𝑇) = (mVR‘𝑇)
212, 20, 15mrsubvrs 31119 . . . . . . . . 9 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ (2nd𝑋) ∈ (mREx‘𝑇)) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
2212, 19, 21syl2anc 692 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
23 fveq2 6150 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (1st𝑒) = (1st𝑋))
24 fveq2 6150 . . . . . . . . . . . . . 14 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
2524fveq2d 6154 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd𝑋)))
2623, 25opeq12d 4383 . . . . . . . . . . . 12 (𝑒 = 𝑋 → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
27 eqid 2626 . . . . . . . . . . . 12 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)
28 opex 4898 . . . . . . . . . . . 12 ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ ∈ V
2926, 27, 28fvmpt3i 6245 . . . . . . . . . . 11 (𝑋𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
3013, 29syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
3130fveq2d 6154 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩))
32 xp1st 7146 . . . . . . . . . . . . 13 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑋) ∈ (mTC‘𝑇))
3317, 32syl 17 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (1st𝑋) ∈ (mTC‘𝑇))
342, 15mrsubf 31114 . . . . . . . . . . . . . 14 (𝑓 ∈ ran (mRSubst‘𝑇) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3512, 34syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3618, 16eleq2s 2722 . . . . . . . . . . . . . 14 (𝑋𝐸 → (2nd𝑋) ∈ (mREx‘𝑇))
3713, 36syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
3835, 37ffvelrnd 6317 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇))
39 opelxpi 5113 . . . . . . . . . . . 12 (((1st𝑋) ∈ (mTC‘𝑇) ∧ (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇)) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
4033, 38, 39syl2anc 692 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
4140, 16syl6eleqr 2715 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸)
42 msubvrs.v . . . . . . . . . . 11 𝑉 = (mVars‘𝑇)
4320, 1, 42mvrsval 31102 . . . . . . . . . 10 (⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸 → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
4441, 43syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
45 fvex 6160 . . . . . . . . . . . . 13 (1st𝑋) ∈ V
46 fvex 6160 . . . . . . . . . . . . 13 (𝑓‘(2nd𝑋)) ∈ V
4745, 46op2nd 7125 . . . . . . . . . . . 12 (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋))
4847a1i 11 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋)))
4948rneqd 5317 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = ran (𝑓‘(2nd𝑋)))
5049ineq1d 3796 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
5131, 44, 503eqtrd 2664 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
5220, 1, 42mvrsval 31102 . . . . . . . . . . 11 (𝑋𝐸 → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5313, 52syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5453iuneq1d 4516 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
55 msubvrs.h . . . . . . . . . . . . . . . . 17 𝐻 = (mVH‘𝑇)
5620, 1, 55mvhf 31155 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:(mVR‘𝑇)⟶𝐸)
57563ad2ant1 1080 . . . . . . . . . . . . . . 15 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝐻:(mVR‘𝑇)⟶𝐸)
58 inss2 3817 . . . . . . . . . . . . . . . 16 (ran (2nd𝑋) ∩ (mVR‘𝑇)) ⊆ (mVR‘𝑇)
5958sseli 3584 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇)) → 𝑥 ∈ (mVR‘𝑇))
60 ffvelrn 6314 . . . . . . . . . . . . . . 15 ((𝐻:(mVR‘𝑇)⟶𝐸𝑥 ∈ (mVR‘𝑇)) → (𝐻𝑥) ∈ 𝐸)
6157, 59, 60syl2an 494 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) ∈ 𝐸)
62 fveq2 6150 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (1st𝑒) = (1st ‘(𝐻𝑥)))
63 fveq2 6150 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝐻𝑥) → (2nd𝑒) = (2nd ‘(𝐻𝑥)))
6463fveq2d 6154 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd ‘(𝐻𝑥))))
6562, 64opeq12d 4383 . . . . . . . . . . . . . . 15 (𝑒 = (𝐻𝑥) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6665, 27, 28fvmpt3i 6245 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ 𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6761, 66syl 17 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6859adantl 482 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ (mVR‘𝑇))
69 eqid 2626 . . . . . . . . . . . . . . . . 17 (mType‘𝑇) = (mType‘𝑇)
7020, 69, 55mvhval 31131 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (mVR‘𝑇) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
7168, 70syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
72 fvex 6160 . . . . . . . . . . . . . . . 16 ((mType‘𝑇)‘𝑥) ∈ V
73 s1cli 13318 . . . . . . . . . . . . . . . . 17 ⟨“𝑥”⟩ ∈ Word V
7473elexi 3204 . . . . . . . . . . . . . . . 16 ⟨“𝑥”⟩ ∈ V
7572, 74op1std 7126 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7671, 75syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7772, 74op2ndd 7127 . . . . . . . . . . . . . . . 16 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7871, 77syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7978fveq2d 6154 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘(2nd ‘(𝐻𝑥))) = (𝑓‘⟨“𝑥”⟩))
8076, 79opeq12d 4383 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩ = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
8167, 80eqtrd 2660 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
8281fveq2d 6154 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩))
83 simpl1 1062 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑇 ∈ mFS)
8420, 14, 69mtyf2 31148 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8583, 84syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8685, 68ffvelrnd 6317 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇))
8735adantr 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
88 elun2 3764 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mVR‘𝑇) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8968, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9089s1cld 13317 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
91 eqid 2626 . . . . . . . . . . . . . . . . . 18 (mCN‘𝑇) = (mCN‘𝑇)
9291, 20, 15mrexval 31098 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9383, 92syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9490, 93eleqtrrd 2707 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ (mREx‘𝑇))
9587, 94ffvelrnd 6317 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇))
96 opelxpi 5113 . . . . . . . . . . . . . 14 ((((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇) ∧ (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇)) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9786, 95, 96syl2anc 692 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9897, 16syl6eleqr 2715 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸)
9920, 1, 42mvrsval 31102 . . . . . . . . . . . 12 (⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸 → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
10098, 99syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
101 fvex 6160 . . . . . . . . . . . . . . 15 (𝑓‘⟨“𝑥”⟩) ∈ V
10272, 101op2nd 7125 . . . . . . . . . . . . . 14 (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩)
103102a1i 11 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩))
104103rneqd 5317 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = ran (𝑓‘⟨“𝑥”⟩))
105104ineq1d 3796 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10682, 100, 1053eqtrd 2664 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
107106iuneq2dv 4513 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10854, 107eqtrd 2660 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10922, 51, 1083eqtr4d 2670 . . . . . . 7 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
110 fveq1 6149 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹𝑋) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋))
111110fveq2d 6154 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)))
112 fveq1 6149 . . . . . . . . . 10 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹‘(𝐻𝑥)) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))
113112fveq2d 6154 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹‘(𝐻𝑥))) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
114113iuneq2d 4518 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
115111, 114eqeq12d 2641 . . . . . . 7 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → ((𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) ↔ (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))))
116109, 115syl5ibrcom 237 . . . . . 6 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥)))))
1171163expia 1264 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝑋𝐸 → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
118117com23 86 . . . 4 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
119118rexlimdva 3029 . . 3 (𝑇 ∈ mFS → (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
12011, 119syl5bi 232 . 2 (𝑇 ∈ mFS → (𝐹 ∈ ran 𝑆 → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
1211203imp 1254 1 ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wrex 2913  Vcvv 3191  cun 3558  cin 3559  cop 4159   ciun 4490  cmpt 4678   × cxp 5077  ran crn 5080  wf 5846  cfv 5850  1st c1st 7114  2nd c2nd 7115  Word cword 13225  ⟨“cs1 13228  mCNcmcn 31057  mVRcmvar 31058  mTypecmty 31059  mTCcmtc 31061  mRExcmrex 31063  mExcmex 31064  mVarscmvrs 31066  mRSubstcmrsub 31067  mSubstcmsub 31068  mVHcmvh 31069  mFScmfs 31073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-word 13233  df-lsw 13234  df-concat 13235  df-s1 13236  df-substr 13237  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-0g 16018  df-gsum 16019  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-frmd 17302  df-mrex 31083  df-mex 31084  df-mvrs 31086  df-mrsub 31087  df-msub 31088  df-mvh 31089  df-mfs 31093
This theorem is referenced by:  mclsppslem  31180
  Copyright terms: Public domain W3C validator