Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrn Structured version   Visualization version   GIF version

Theorem msubrn 33021
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem msubrn
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubff.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubff.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 eqid 2759 . . . . . 6 (mEx‘𝑇) = (mEx‘𝑇)
5 eqid 2759 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 33015 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
76rneqd 5785 . . . 4 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
81, 2, 5mrsubff 33004 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
98adantr 484 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
109ffund 6508 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → Fun (mRSubst‘𝑇))
118ffnd 6505 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇) Fn (𝑅pm 𝑉))
12 fnfvelrn 6846 . . . . . . . . . 10 (((mRSubst‘𝑇) Fn (𝑅pm 𝑉) ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
1311, 12sylan 583 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
141, 2, 5mrsubrn 33005 . . . . . . . . 9 ran (mRSubst‘𝑇) = ((mRSubst‘𝑇) “ (𝑅m 𝑉))
1513, 14eleqtrdi 2863 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉)))
16 fvelima 6725 . . . . . . . 8 ((Fun (mRSubst‘𝑇) ∧ ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉))) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
1710, 15, 16syl2anc 587 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
18 elmapi 8445 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
1918adantl 485 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔:𝑉𝑅)
20 ssid 3917 . . . . . . . . . . . 12 𝑉𝑉
211, 2, 3, 4, 5msubfval 33016 . . . . . . . . . . . 12 ((𝑔:𝑉𝑅𝑉𝑉) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
2219, 20, 21sylancl 589 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
23 fvex 6677 . . . . . . . . . . . . . . . 16 (mEx‘𝑇) ∈ V
2423mptex 6984 . . . . . . . . . . . . . . 15 (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ V
25 eqid 2759 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
2624, 25fnmpti 6480 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)
276fneq1d 6433 . . . . . . . . . . . . . 14 (𝑇 ∈ V → (𝑆 Fn (𝑅pm 𝑉) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)))
2826, 27mpbiri 261 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
2928adantr 484 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
30 mapsspm 8472 . . . . . . . . . . . . 13 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
3130a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
32 simpr 488 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔 ∈ (𝑅m 𝑉))
33 fnfvima 6994 . . . . . . . . . . . 12 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3429, 31, 32, 33syl3anc 1369 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3522, 34eqeltrrd 2854 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
3635adantlr 714 . . . . . . . . 9 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
37 fveq1 6663 . . . . . . . . . . . 12 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒)) = (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)))
3837opeq2d 4774 . . . . . . . . . . 11 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩ = ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)
3938mpteq2dv 5133 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
4039eleq1d 2837 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ((𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)) ↔ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4136, 40syl5ibcom 248 . . . . . . . 8 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4241rexlimdva 3209 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4317, 42mpd 15 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
4443fmpttd 6877 . . . . 5 (𝑇 ∈ V → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
4544frnd 6511 . . . 4 (𝑇 ∈ V → ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) ⊆ (𝑆 “ (𝑅m 𝑉)))
467, 45eqsstrd 3933 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
473rnfvprc 6658 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
48 0ss 4296 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
4947, 48eqsstrdi 3949 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
5046, 49pm2.61i 185 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
51 imassrn 5918 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
5250, 51eqssi 3911 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1539  wcel 2112  wrex 3072  Vcvv 3410  wss 3861  c0 4228  cop 4532  cmpt 5117  ran crn 5530  cima 5532  Fun wfun 6335   Fn wfn 6336  wf 6337  cfv 6341  (class class class)co 7157  1st c1st 7698  2nd c2nd 7699  m cmap 8423  pm cpm 8424  mVRcmvar 32953  mRExcmrex 32958  mExcmex 32959  mRSubstcmrsub 32962  mSubstcmsub 32963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-n0 11949  df-z 12035  df-uz 12297  df-fz 12954  df-fzo 13097  df-seq 13433  df-hash 13755  df-word 13928  df-concat 13984  df-s1 14011  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-0g 16788  df-gsum 16789  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-submnd 18038  df-frmd 18095  df-mrex 32978  df-mrsub 32982  df-msub 32983
This theorem is referenced by:  msubff1o  33049
  Copyright terms: Public domain W3C validator