 Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsubrn Structured version   Visualization version   GIF version

Theorem elmsubrn 31732
 Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
elmsubrn.e 𝐸 = (mEx‘𝑇)
elmsubrn.o 𝑂 = (mRSubst‘𝑇)
elmsubrn.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
elmsubrn ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑇,𝑒
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑇(𝑓)

Proof of Theorem elmsubrn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
2 eqid 2760 . . . . . 6 (mREx‘𝑇) = (mREx‘𝑇)
3 elmsubrn.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 elmsubrn.e . . . . . 6 𝐸 = (mEx‘𝑇)
5 elmsubrn.o . . . . . 6 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 31727 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
71, 2, 5mrsubff 31716 . . . . . . . 8 (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)))
8 ffn 6206 . . . . . . . 8 (𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)) → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)))
97, 8syl 17 . . . . . . 7 (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)))
10 fnfvelrn 6519 . . . . . . 7 ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
119, 10sylan 489 . . . . . 6 ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
127feqmptd 6411 . . . . . 6 (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂𝑔)))
13 eqidd 2761 . . . . . 6 (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
14 fveq1 6351 . . . . . . . 8 (𝑓 = (𝑂𝑔) → (𝑓‘(2nd𝑒)) = ((𝑂𝑔)‘(2nd𝑒)))
1514opeq2d 4560 . . . . . . 7 (𝑓 = (𝑂𝑔) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)
1615mpteq2dv 4897 . . . . . 6 (𝑓 = (𝑂𝑔) → (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩))
1711, 12, 13, 16fmptco 6559 . . . . 5 (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
186, 17eqtr4d 2797 . . . 4 (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
1918rneqd 5508 . . 3 (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
20 rnco 5802 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂)
21 ssid 3765 . . . . . 6 ran 𝑂 ⊆ ran 𝑂
22 resmpt 5607 . . . . . 6 (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
2321, 22ax-mp 5 . . . . 5 ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2423rneqi 5507 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2520, 24eqtri 2782 . . 3 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2619, 25syl6eq 2810 . 2 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
27 mpt0 6182 . . . . 5 (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = ∅
2827eqcomi 2769 . . . 4 ∅ = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
29 fvprc 6346 . . . . 5 𝑇 ∈ V → (mSubst‘𝑇) = ∅)
303, 29syl5eq 2806 . . . 4 𝑇 ∈ V → 𝑆 = ∅)
31 fvprc 6346 . . . . . . . 8 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
325, 31syl5eq 2806 . . . . . . 7 𝑇 ∈ V → 𝑂 = ∅)
3332rneqd 5508 . . . . . 6 𝑇 ∈ V → ran 𝑂 = ran ∅)
34 rn0 5532 . . . . . 6 ran ∅ = ∅
3533, 34syl6eq 2810 . . . . 5 𝑇 ∈ V → ran 𝑂 = ∅)
3635mpteq1d 4890 . . . 4 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3728, 30, 363eqtr4a 2820 . . 3 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3837rneqd 5508 . 2 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3926, 38pm2.61i 176 1 ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ⊆ wss 3715  ∅c0 4058  ⟨cop 4327   ↦ cmpt 4881  ran crn 5267   ↾ cres 5268   ∘ ccom 5270   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  1st c1st 7331  2nd c2nd 7332   ↑𝑚 cmap 8023   ↑pm cpm 8024  mVRcmvar 31665  mRExcmrex 31670  mExcmex 31671  mRSubstcmrsub 31674  mSubstcmsub 31675 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-frmd 17587  df-mrex 31690  df-mrsub 31694  df-msub 31695 This theorem is referenced by:  msubco  31735  msubvrs  31764
 Copyright terms: Public domain W3C validator