 Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsubrn Structured version   Visualization version   GIF version

Theorem elmsubrn 31130
 Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
elmsubrn.e 𝐸 = (mEx‘𝑇)
elmsubrn.o 𝑂 = (mRSubst‘𝑇)
elmsubrn.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
elmsubrn ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑇,𝑒
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑇(𝑓)

Proof of Theorem elmsubrn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
2 eqid 2621 . . . . . 6 (mREx‘𝑇) = (mREx‘𝑇)
3 elmsubrn.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 elmsubrn.e . . . . . 6 𝐸 = (mEx‘𝑇)
5 elmsubrn.o . . . . . 6 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 31125 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
71, 2, 5mrsubff 31114 . . . . . . . 8 (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)))
8 ffn 6002 . . . . . . . 8 (𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)) → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)))
97, 8syl 17 . . . . . . 7 (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)))
10 fnfvelrn 6312 . . . . . . 7 ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
119, 10sylan 488 . . . . . 6 ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
127feqmptd 6206 . . . . . 6 (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂𝑔)))
13 eqidd 2622 . . . . . 6 (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
14 fveq1 6147 . . . . . . . 8 (𝑓 = (𝑂𝑔) → (𝑓‘(2nd𝑒)) = ((𝑂𝑔)‘(2nd𝑒)))
1514opeq2d 4377 . . . . . . 7 (𝑓 = (𝑂𝑔) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)
1615mpteq2dv 4705 . . . . . 6 (𝑓 = (𝑂𝑔) → (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩))
1711, 12, 13, 16fmptco 6351 . . . . 5 (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
186, 17eqtr4d 2658 . . . 4 (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
1918rneqd 5313 . . 3 (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
20 rnco 5600 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂)
21 ssid 3603 . . . . . 6 ran 𝑂 ⊆ ran 𝑂
22 resmpt 5408 . . . . . 6 (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
2321, 22ax-mp 5 . . . . 5 ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2423rneqi 5312 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2520, 24eqtri 2643 . . 3 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2619, 25syl6eq 2671 . 2 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
27 mpt0 5978 . . . . 5 (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = ∅
2827eqcomi 2630 . . . 4 ∅ = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
29 fvprc 6142 . . . . 5 𝑇 ∈ V → (mSubst‘𝑇) = ∅)
303, 29syl5eq 2667 . . . 4 𝑇 ∈ V → 𝑆 = ∅)
31 fvprc 6142 . . . . . . . 8 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
325, 31syl5eq 2667 . . . . . . 7 𝑇 ∈ V → 𝑂 = ∅)
3332rneqd 5313 . . . . . 6 𝑇 ∈ V → ran 𝑂 = ran ∅)
34 rn0 5337 . . . . . 6 ran ∅ = ∅
3533, 34syl6eq 2671 . . . . 5 𝑇 ∈ V → ran 𝑂 = ∅)
3635mpteq1d 4698 . . . 4 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3728, 30, 363eqtr4a 2681 . . 3 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3837rneqd 5313 . 2 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3926, 38pm2.61i 176 1 ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1480   ∈ wcel 1987  Vcvv 3186   ⊆ wss 3555  ∅c0 3891  ⟨cop 4154   ↦ cmpt 4673  ran crn 5075   ↾ cres 5076   ∘ ccom 5078   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112   ↑𝑚 cmap 7802   ↑pm cpm 7803  mVRcmvar 31063  mRExcmrex 31068  mExcmex 31069  mRSubstcmrsub 31072  mSubstcmsub 31073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-frmd 17307  df-mrex 31088  df-mrsub 31092  df-msub 31093 This theorem is referenced by:  msubco  31133  msubvrs  31162
 Copyright terms: Public domain W3C validator