MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppginv Structured version   Visualization version   GIF version

Theorem oppginv 18487
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppginv.2 𝐼 = (invg𝑅)
Assertion
Ref Expression
oppginv (𝑅 ∈ Grp → 𝐼 = (invg𝑂))

Proof of Theorem oppginv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 oppginv.2 . . . 4 𝐼 = (invg𝑅)
31, 2grpinvf 18150 . . 3 (𝑅 ∈ Grp → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
4 eqid 2821 . . . . . 6 (+g𝑅) = (+g𝑅)
5 oppgbas.1 . . . . . 6 𝑂 = (oppg𝑅)
6 eqid 2821 . . . . . 6 (+g𝑂) = (+g𝑂)
74, 5, 6oppgplus 18477 . . . . 5 ((𝐼𝑥)(+g𝑂)𝑥) = (𝑥(+g𝑅)(𝐼𝑥))
8 eqid 2821 . . . . . 6 (0g𝑅) = (0g𝑅)
91, 4, 8, 2grprinv 18153 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(𝐼𝑥)) = (0g𝑅))
107, 9syl5eq 2868 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
1110ralrimiva 3182 . . 3 (𝑅 ∈ Grp → ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
125oppggrp 18485 . . . 4 (𝑅 ∈ Grp → 𝑂 ∈ Grp)
135, 1oppgbas 18479 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
145, 8oppgid 18484 . . . . 5 (0g𝑅) = (0g𝑂)
15 eqid 2821 . . . . 5 (invg𝑂) = (invg𝑂)
1613, 6, 14, 15isgrpinv 18156 . . . 4 (𝑂 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
1712, 16syl 17 . . 3 (𝑅 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
183, 11, 17mpbi2and 710 . 2 (𝑅 ∈ Grp → (invg𝑂) = 𝐼)
1918eqcomd 2827 1 (𝑅 ∈ Grp → 𝐼 = (invg𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  oppgcoppg 18473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-oppg 18474
This theorem is referenced by:  oppgsubg  18491  oppgtgp  22706  tgpconncomp  22721
  Copyright terms: Public domain W3C validator