MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqz2 Structured version   Visualization version   GIF version

Theorem rlimsqz2 15007
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqz.d (𝜑𝐷 ∈ ℝ)
rlimsqz.m (𝜑𝑀 ∈ ℝ)
rlimsqz.l (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqz.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
rlimsqz.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
rlimsqz2.1 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
rlimsqz2.2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐶)
Assertion
Ref Expression
rlimsqz2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqz2
StepHypRef Expression
1 rlimsqz.m . 2 (𝜑𝑀 ∈ ℝ)
2 rlimsqz.d . . 3 (𝜑𝐷 ∈ ℝ)
32recnd 10669 . 2 (𝜑𝐷 ∈ ℂ)
4 rlimsqz.l . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
5 rlimsqz.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65recnd 10669 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
7 rlimsqz.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87recnd 10669 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
97adantrr 715 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶 ∈ ℝ)
105adantrr 715 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵 ∈ ℝ)
112adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷 ∈ ℝ)
12 rlimsqz2.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
139, 10, 11, 12lesub1dd 11256 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (𝐶𝐷) ≤ (𝐵𝐷))
14 rlimsqz2.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐶)
1511, 9, 14abssubge0d 14791 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) = (𝐶𝐷))
1611, 9, 10, 14, 12letrd 10797 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐵)
1711, 10, 16abssubge0d 14791 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐵𝐷)) = (𝐵𝐷))
1813, 15, 173brtr4d 5098 . 2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) ≤ (abs‘(𝐵𝐷)))
191, 3, 4, 6, 8, 18rlimsqzlem 15005 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cr 10536  cle 10676  cmin 10870  abscabs 14593  𝑟 crli 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-rlim 14846
This theorem is referenced by:  cxp2limlem  25553  cxp2lim  25554  chpchtlim  26055  selberg2lem  26126
  Copyright terms: Public domain W3C validator